Skip to main content

Advertisement

Log in

A neuronal network model of primary visual cortex explains spatial frequency selectivity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We address how spatial frequency selectivity arises in Macaque primary visual cortex (V1) by simulating V1 with a large-scale network model consisting of O(104) excitatory and inhibitory integrate-and-fire neurons with realistic synaptic conductances. The new model introduces variability of the widths of subregions in V1 neuron receptive fields. As a consequence different model V1 neurons prefer different spatial frequencies. The model cortex has distributions of spatial frequency selectivity and of preference that resemble experimental findings from the real V1. Two main sources of spatial frequency selectivity in the model are the spatial arrangement of feedforward excitation, and cortical nonlinear suppression, a result of cortical inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bardy, C., Huang, J. Y., Wang, C., FitzGibbon, T., & Dreher, B. (2006). ‘Simplification’ of responses of complex cells in cat striate cortex: Suppressive surrounds and ‘feedback’ inactivation. Journal of Physiology, 574, 731–750.

    Article  PubMed  CAS  Google Scholar 

  • Beierlein, M., Gibson, J. R., & Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90, 2987–3000.

    Article  PubMed  Google Scholar 

  • Bredfeldt, C. E., & Ringach, D. L. (2002). Dynamics of spatial frequency tuning in macaque V1. Journal of Neuroscience, 22, 1976–1984.

    PubMed  CAS  Google Scholar 

  • Cai, D., Tao, L., Shelley, M., & McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Science of the United States of America, 101, 7757–7762.

    Article  CAS  Google Scholar 

  • Campbell, F. W., Cooper, G. F., & Enroth-Cugell, C. (1969). The spatial selectivity of the visual cells of the cat. Journal of Physiology, 203, 223–235.

    PubMed  CAS  Google Scholar 

  • Chance, F. S., Nelson, S. B., & Abbott, L. F. (1999). Complex cells as cortically amplified simple cells. Nature Neuroscience, 2(3), 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT.

    Google Scholar 

  • DeAngelis, G., Ohzawa, I., & Freeman, R. D. (1995). Receptive-field dynamics in the central visual pathways. Trends in Neuroscience, 18, 451–458.

    Article  CAS  Google Scholar 

  • DeAngelis, G. C., Ghose, G. M., Ohzawa, I., & Freeman, R. D. (1999). Functional micro-organization of primary visual cortex: Receptive field analysis of nearby neurons. Journal of Neuroscience, 19, 4046–4064.

    PubMed  CAS  Google Scholar 

  • Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.

    PubMed  CAS  Google Scholar 

  • DeValois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque cortex. Vision Research, 22, 545–549.

    Article  CAS  Google Scholar 

  • DeValois, R. L., & DeValois, K. K. (1988). Spatial vision. New York: Oxford University Press.

    Google Scholar 

  • Enroth-Cugell, C., & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.

    PubMed  CAS  Google Scholar 

  • Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron, 54, 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J., Beierlein, M., & Connors, B. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and function architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex. Journal of Neuroscience, 20, 8504–8514.

    PubMed  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.

    Google Scholar 

  • Kuffler, S. K. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.

    PubMed  CAS  Google Scholar 

  • Lauritzen, T. Z., & Miller, K. D. (2003). Different roles for simple-cell and complex-cell inhibition in V1. Journal of Neuroscience, 23(32), 10201–10213.

    PubMed  CAS  Google Scholar 

  • McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, J. (2000). A neuronal network model of sharpening and dynamics of orientation tuning in an input layer of macaque primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 97, 8087–8092.

    Article  CAS  Google Scholar 

  • Mechler, F., & Ringach, D. L. (2002). On the classification of simple and complex cells. Vision Research, 42, 1017–1033.

    Article  PubMed  Google Scholar 

  • Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology, 283, 101–120.

    PubMed  CAS  Google Scholar 

  • Murthy, A., & Humphrey, A. L. (1999). Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Journal of Neurophysiology, 81, 1212–1224.

    PubMed  CAS  Google Scholar 

  • Priebe, N. J., Mechler, F., Carandini, M., & Ferster, D. (2004). The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nature Neuroscience, 7, 1113–1122.

    Article  PubMed  CAS  Google Scholar 

  • Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.

    PubMed  Google Scholar 

  • Ringach, D. L., Shapley, R. M., & Hawken, M. J. (2002a). Orientation selectivity in macaque V1: Diversity and laminar dependence. Journal of Neuroscience, 22(13), 5639–5651.

    PubMed  CAS  Google Scholar 

  • Ringach, D. L., Bredfeldt, C. E., Hawken, M., & Shapley, R. (2002b). Suppression of neural responses to non-optimal stimuli correlates with tuning selectivity in macaque V1. Journal of Neurophysiology, 87, 1018–1027.

    PubMed  Google Scholar 

  • Robson, J. G. (1975). Receptive fields. In K. DeValois & R. DeValois (Eds.), “Seeing” handbook of perception. New York: Academic.

    Google Scholar 

  • Rodieck, R. W. (1965). Quantitative analysis of cat retinal gangalion cell response to visual stimuli. Vision Research, 5, 583–601.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. Journal of Physiology, 494, 757–771.

    PubMed  CAS  Google Scholar 

  • Shelley, M., McLaughlin, D., Shapley, R., & Wielaard, J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of Computational Neuroscience, 13, 93–109.

    Article  PubMed  Google Scholar 

  • Sirovich, L. & Uglesich, R. (2004). The organization of orientation and spatial frequency in primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 101, 16941–16946.

    Article  CAS  Google Scholar 

  • Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Science of the United States of America, 101(1), 366–371.

    Article  CAS  Google Scholar 

  • Tao, L., Cai, D., McLaughlin, D., Shelley, M., & Shapley, R. (2006). Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proceedings of the National Academy of Science of the United States of America, 103, 12911–12916.

    Article  CAS  Google Scholar 

  • Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.

    PubMed  CAS  Google Scholar 

  • von der Heydt, R., Peterhans, E., & Dsteler, M. R. (1992). Periodic-pattern-selective cells in monkey visual cortex. Journal of Neuroscience, 12, 1416–1434.

    PubMed  Google Scholar 

  • Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21, 5203–5211.

    PubMed  CAS  Google Scholar 

  • Xing, D., Ringach, D., Shapley, R., & Hawken, M. (2004). Correlation of local and global orientation and spatial frequency tuning in macaque V1. Journal of Physiology, 557, 923–933.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8, 1552–1559.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Swartz Foundation, and by grants from the National Eye Institute R01EY-01472 and T32EY-07158. Thanks to Drs. Dajun Xing, Patrick Williams, and Chun-I Yeh for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

Additional information

Action Editor: Jonathan D. Victor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Shelley, M. & Shapley, R. A neuronal network model of primary visual cortex explains spatial frequency selectivity. J Comput Neurosci 26, 271–287 (2009). https://doi.org/10.1007/s10827-008-0110-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0110-x

Keywords