Skip to main content
Log in

Bifurcation theory explains waveform variability in a congenital eye movement disorder

  • BRIEF COMMUNICATION
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In dynamical systems, configurations that permit flexible control are also prone to undesirable behavior. We study a bilateral model of the oculomotor pre-motor network that conforms with the neuroanatomical constraint that brainstem neurons project to cerebellar Purkinje cells on both sides, but Purkinje cells project back to brainstem neurons on the same side only. Bifurcation analysis reveals that this network asymmetry enables flexible control by the cerebellum of brainstem network dynamics, but small changes in connection pattern or strength lead to behavior that is unstable, oscillatory, or both. The model produces the full range of waveform types associated with the hereditary eye movement disorder know as congenital nystagmus, and is consistent with findings linking the disorder with abnormal connectivity or limited plasticity in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Akman, O., Broomhead, D., Abadi, R., & Clement, R. (2005). Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. Mathematical Biosciences, 51, 661–694.

    CAS  Google Scholar 

  • Anastasio, T. J., & Gad, Y. P. (2007). Sparse cerebellar innervation can morph the dynamics of a model oculomotor neural integrator. Journal of Computational Neuroscience, 22, 239–254.

    Article  PubMed  Google Scholar 

  • Babalian, A. L., & Vidal, P. P. (2000). Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: An in vitro whole brain study. Journal of Neurophysiology, 84, 2514–2528.

    PubMed  CAS  Google Scholar 

  • Büttner-Ennever, J. A. (1988). Neuroanatomy of the oculomotor system. Amsterdam: Elsevier.

    Google Scholar 

  • Cannon, S. C., & Robinson, D. A. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. Journal of Neurophysiology, 57, 1383–1409.

    PubMed  CAS  Google Scholar 

  • Chelazzi, L., Ghirardi, M., Rossi, F., Strata, P., & Tempia, F. (1990). Spontaneous saccades and gaze holding ability in the pigmented rat. II. Effects of localized cerebellar lesions. European Journal of Neuroscience, 2, 1085–1094.

    Article  PubMed  Google Scholar 

  • Dell’Osso, L. F. (1982). Congenital nystagmus—basic aspects (pp. 129–138). Oxford: Pergamon.

    Google Scholar 

  • Dell’Osso, L. F., & Daroff, R. B. (1975). Congenital nystagmus waveforms and foveation strategy. Documenta Ophthalmologica, 39, 155–182.

    Article  PubMed  CAS  Google Scholar 

  • Dell’Osso, L. F., Flynn, J. T., & Daroff, R. B. (1974). Hereditary congenital nystagmus. Archives of Ophthalmology, 92, 366–374.

    PubMed  CAS  Google Scholar 

  • Dell’Osso, L. F., Gauthier, G., Liberman, G., & Stark, L. (1972). Eye movement recordings as a diagnostic tool in a case of congenital nystagmus. American Journal of Optometry and Archives of American Academy of Optometry, 49, 3–13.

    PubMed  CAS  Google Scholar 

  • Embree, M., & Trefethen, L. N. (2001). Generalizing eigenvalue theorems to pseudospectra theorems. SIAM Journal of Scientific Computing, 23(2), 583–590.

    Article  Google Scholar 

  • Harris, C. M., & Berry, D. L. (2006). A distal model of congenital nystagmus as nonlinear adaptive oscillations. Nonlinear Dynamics, 44, 367–380.

    Article  Google Scholar 

  • Jacobs, J. B., & Dell’Osso, L. F. (2004). Congenital nystagmus: Hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. Journal of Vision, 4, 604–625.

    Article  PubMed  Google Scholar 

  • Maybodi, M. (2003). Infantile-onset nystagmus. Current Opinion in Ophthalmology, 14, 276–285.

    Article  PubMed  Google Scholar 

  • Optican, L. M., & Zee, D. S. (1984). A hypothetical explanation of congenital nystagmus. Biological Cybernetics, 50, 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Reccia, R., Roberti, G., Russo, P., & Segre, G. (1986). Spectral analysis of dual-jerk waveforms in congenital nystagmus. Biological Cybernetics, 55, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. A. (1989). Integrating with neurons. Annual Review of Neuroscience, 12, 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Simon, B. (1993). Spectral analysis of rank one perturbations and applications. Lectures given at the Vancouver Summer School in Mathematical Physics.

  • Spivak, M. (1999). Differential geometry (vol. III, 3rd ed.). Houston: Publish or Perish.

    Google Scholar 

  • Stahl, J. S., & Simpson, J. I. (1995). Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. Journal of Neurophysiology, 73, 1396–1413.

    PubMed  CAS  Google Scholar 

  • Tarpey, P., Thomas, S., et al. (2006). Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nature Genetics, 38, 1242–1244.

    Article  PubMed  CAS  Google Scholar 

  • Tiliket, C., Shelhamer, M., Roberts, D., & Zee, D. S. (1994). Short term vestibulo-ocular reflex adaptation in humans. I. Effect on the ocular motor velocity-to-position neural integrator. Experimental Brain Research, 100, 316–327.

    Article  CAS  Google Scholar 

  • Trefethen, L. N. (1997). Pseudospectra of linear operators. SIAM Review, 39, 383–406.

    Article  Google Scholar 

  • Yee, R. D., Wong, E. K., Baloh, R. W., & Honrubia, V. (1976). A study of congenital nystagmus waveforms. Neurology, 26, 326–333.

    PubMed  CAS  Google Scholar 

  • Yoshida, T., Katoh, A., Ohtsuki, G., Mishina, M., & Hirano, T. (2004). Oscillating purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor γ 2 subunit. Journal of Neuroscience, 24, 2440–2448.

    Article  PubMed  CAS  Google Scholar 

  • Zee, S., Yamazaki, A., Butler, P. H., & Gücer, G. (1981). Effects of ablation of flocculus and paraflocculus on eye movements in primate. Journal of Neurophysiology, 46, 878–899.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Joseph Malpeli and Gregory Stanton for comments on the manuscript. This research was supported in part by NSF grant DMS0354462 to JCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Anastasio.

Additional information

Action Editor: G. Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreiro, A.K., Bronski, J.C. & Anastasio, T.J. Bifurcation theory explains waveform variability in a congenital eye movement disorder. J Comput Neurosci 26, 321–329 (2009). https://doi.org/10.1007/s10827-008-0113-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0113-7

Keywords

Navigation