Abstract
In dynamical systems, configurations that permit flexible control are also prone to undesirable behavior. We study a bilateral model of the oculomotor pre-motor network that conforms with the neuroanatomical constraint that brainstem neurons project to cerebellar Purkinje cells on both sides, but Purkinje cells project back to brainstem neurons on the same side only. Bifurcation analysis reveals that this network asymmetry enables flexible control by the cerebellum of brainstem network dynamics, but small changes in connection pattern or strength lead to behavior that is unstable, oscillatory, or both. The model produces the full range of waveform types associated with the hereditary eye movement disorder know as congenital nystagmus, and is consistent with findings linking the disorder with abnormal connectivity or limited plasticity in the cerebellum.



References
Akman, O., Broomhead, D., Abadi, R., & Clement, R. (2005). Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. Mathematical Biosciences, 51, 661–694.
Anastasio, T. J., & Gad, Y. P. (2007). Sparse cerebellar innervation can morph the dynamics of a model oculomotor neural integrator. Journal of Computational Neuroscience, 22, 239–254.
Babalian, A. L., & Vidal, P. P. (2000). Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: An in vitro whole brain study. Journal of Neurophysiology, 84, 2514–2528.
Büttner-Ennever, J. A. (1988). Neuroanatomy of the oculomotor system. Amsterdam: Elsevier.
Cannon, S. C., & Robinson, D. A. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. Journal of Neurophysiology, 57, 1383–1409.
Chelazzi, L., Ghirardi, M., Rossi, F., Strata, P., & Tempia, F. (1990). Spontaneous saccades and gaze holding ability in the pigmented rat. II. Effects of localized cerebellar lesions. European Journal of Neuroscience, 2, 1085–1094.
Dell’Osso, L. F. (1982). Congenital nystagmus—basic aspects (pp. 129–138). Oxford: Pergamon.
Dell’Osso, L. F., & Daroff, R. B. (1975). Congenital nystagmus waveforms and foveation strategy. Documenta Ophthalmologica, 39, 155–182.
Dell’Osso, L. F., Flynn, J. T., & Daroff, R. B. (1974). Hereditary congenital nystagmus. Archives of Ophthalmology, 92, 366–374.
Dell’Osso, L. F., Gauthier, G., Liberman, G., & Stark, L. (1972). Eye movement recordings as a diagnostic tool in a case of congenital nystagmus. American Journal of Optometry and Archives of American Academy of Optometry, 49, 3–13.
Embree, M., & Trefethen, L. N. (2001). Generalizing eigenvalue theorems to pseudospectra theorems. SIAM Journal of Scientific Computing, 23(2), 583–590.
Harris, C. M., & Berry, D. L. (2006). A distal model of congenital nystagmus as nonlinear adaptive oscillations. Nonlinear Dynamics, 44, 367–380.
Jacobs, J. B., & Dell’Osso, L. F. (2004). Congenital nystagmus: Hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. Journal of Vision, 4, 604–625.
Maybodi, M. (2003). Infantile-onset nystagmus. Current Opinion in Ophthalmology, 14, 276–285.
Optican, L. M., & Zee, D. S. (1984). A hypothetical explanation of congenital nystagmus. Biological Cybernetics, 50, 119–134.
Reccia, R., Roberti, G., Russo, P., & Segre, G. (1986). Spectral analysis of dual-jerk waveforms in congenital nystagmus. Biological Cybernetics, 55, 211–217.
Robinson, D. A. (1989). Integrating with neurons. Annual Review of Neuroscience, 12, 33–45.
Simon, B. (1993). Spectral analysis of rank one perturbations and applications. Lectures given at the Vancouver Summer School in Mathematical Physics.
Spivak, M. (1999). Differential geometry (vol. III, 3rd ed.). Houston: Publish or Perish.
Stahl, J. S., & Simpson, J. I. (1995). Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. Journal of Neurophysiology, 73, 1396–1413.
Tarpey, P., Thomas, S., et al. (2006). Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nature Genetics, 38, 1242–1244.
Tiliket, C., Shelhamer, M., Roberts, D., & Zee, D. S. (1994). Short term vestibulo-ocular reflex adaptation in humans. I. Effect on the ocular motor velocity-to-position neural integrator. Experimental Brain Research, 100, 316–327.
Trefethen, L. N. (1997). Pseudospectra of linear operators. SIAM Review, 39, 383–406.
Yee, R. D., Wong, E. K., Baloh, R. W., & Honrubia, V. (1976). A study of congenital nystagmus waveforms. Neurology, 26, 326–333.
Yoshida, T., Katoh, A., Ohtsuki, G., Mishina, M., & Hirano, T. (2004). Oscillating purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor γ 2 subunit. Journal of Neuroscience, 24, 2440–2448.
Zee, S., Yamazaki, A., Butler, P. H., & Gücer, G. (1981). Effects of ablation of flocculus and paraflocculus on eye movements in primate. Journal of Neurophysiology, 46, 878–899.
Acknowledgements
We thank Joseph Malpeli and Gregory Stanton for comments on the manuscript. This research was supported in part by NSF grant DMS0354462 to JCB.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: G. Bard Ermentrout
Rights and permissions
About this article
Cite this article
Barreiro, A.K., Bronski, J.C. & Anastasio, T.J. Bifurcation theory explains waveform variability in a congenital eye movement disorder. J Comput Neurosci 26, 321–329 (2009). https://doi.org/10.1007/s10827-008-0113-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-008-0113-7