Skip to main content

Advertisement

Log in

Stability and structural constraints of random brain networks with excitatory and inhibitory neural populations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The stability of brain networks with randomly connected excitatory and inhibitory neural populations is investigated using a simplified physiological model of brain electrical activity. Neural populations are randomly assigned to be excitatory or inhibitory and the stability of a brain network is determined by the spectrum of the network’s matrix of connection strengths. The probability that a network is stable is determined from its spectral density which is numerically determined and is approximated by a spectral distribution recently derived by Rajan and Abbott. The probability that a brain network is stable is maximum when the total connection strength into a population is approximately zero and is shown to depend on the arrangement of the excitatory and inhibitory connections and the parameters of the network. The maximum excitatory and inhibitory input into a structure allowed by stability occurs when the net input equals zero and, in contrast to networks with randomly distributed excitatory and inhibitory connections, substantially increases as the number of connections increases. Networks with the largest excitatory and inhibitory input allowed by stability have multiple marginally stable modes, are highly responsive and adaptable to external stimuli, have the same total input into each structure with minimal variance in the excitatory and inhibitory connection strengths, and have a wide range of flexible, adaptable, and complex behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 121, 1133–1145.

    Google Scholar 

  • Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12, 1–12.

    Article  Google Scholar 

  • Bear, M. F., Connors, B. W., & Paradiso, M. A. (2001). Neuroscience: Exploring the brain, (2nd Ed.). Baltimore: Lippincott Williams and Wilkins.

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308.

    Article  Google Scholar 

  • Bollobás, B. (1985). Random graphs. London: Academic.

    Google Scholar 

  • Breakspear, M. (2002). Nonlinear phase desynchronization in human electroncephalographic data. Human Brain Mapping, 15, 175–198.

    Article  PubMed  Google Scholar 

  • Breakspear, M., Roberts, J. A., Terry, J. R., Rodrigues, S., Mahant, N., & Robinson, P. A. (2006). A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex, 16, 1296–1313.

    Article  PubMed  CAS  Google Scholar 

  • Breakspear, M., Terry, J. R., & Friston, K. J. (2003). Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics. Neurocomputing, 52–54, 151–158.

    Article  Google Scholar 

  • Brede, M., & Sinha, S. (2005). Assortative mixing by degree makes a network more unstable. arXiv:cond-mat/0507710.

  • Bronk, B. V. (1964). Accuracy of the semicircle approximation for the density of eigenvalues of random matrices. Journal of Mathematical Physics, 5, 215–220.

    Article  Google Scholar 

  • Cherniak, C. (1994). Component placement optimization in the brain. Journal of Neuroscience, 14, 2418–2427.

    PubMed  CAS  Google Scholar 

  • Chklovskii, D. B., & Koulakov, A. A. (2004). Maps in the brain: what can we learn from them? Annual Reviews of Neuroscience, 27, 369–392.

    Article  CAS  Google Scholar 

  • Chklovskii, D. B., Schikorski, T., & Stevens, C. F. (2002). Wiring optimization in cortical circuits. Neuron, 34, 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Costa, L. da. F., & Sporns, O. (2005). Hierarchical features of large scale cortical connectivity. The European Physics Journal B, 48, 567–573.

    Article  CAS  Google Scholar 

  • Farkas, I. J., Derényi, I., Barabási, A.-L., & Vicsek, T. (2001). Spectra of “real-world” graphs: Beyond the semicircle law. Physical Review E, 64, 026704/1–12.

    Article  CAS  Google Scholar 

  • Felleman, D. J., & van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Jirsa, V. K., & Ding, M. (2006). Synchronization in networks with random interactions: Theory and applications. Chaos, 16, 015109/1–21.

    Article  Google Scholar 

  • Füredi, Z., & Komlós, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica, 1, 233-241.

    Article  Google Scholar 

  • Gray, R. T., & Robinson, P. A. (2007). Stability and spectra of randomly connected excitatory cortical networks. Neurocomputing, 70, 1000–1012.

    Google Scholar 

  • Gray, R. T., & Robinson, P. A. (2008a). Stability and synchronization of random brain networks with a distribution of connection strengths. Neurocomputing, 71, 1373–1387.

    Article  Google Scholar 

  • Gray, R. T., & Robinson, P. A. (2008b). Stability of random brain networks with excitatory and inhibitory connections. Neurocomputing. doi:10.1016/j.neucom.2008.06.001

  • Hilgetag, C. C., Burns, G. A. P. C., O’Neill, M. A., Scannell, J. W., & Young, M. P. (2000a). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philosophical Transactions of the Royal Society of London B, 355, 91–110.

    Article  CAS  Google Scholar 

  • Hilgetag, C. C., O’Neill, M. A., & Young, M. P. (2000b). Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philosophical Transactions of the Royal Society of London B, 355, 71–89.

    Article  CAS  Google Scholar 

  • Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. In Proceedings of the National Academy of Science of the United States of America, 104, 10240–10245.

  • Jouve, B., Rosenstiehl, P., & Imbert, M. (1998). A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cerebral Cortex, 8, 28–39.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, M., Görner, M., & Hilgetag, C. C. (2007). Criticality of spreading dynamics in hierarchical cluster networks with inhibition. New Journal of Physics, 9, 110.

    Article  Google Scholar 

  • Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology, 2, e95/1–11.

    Article  CAS  Google Scholar 

  • Kim, J. W., & Robinson, P. A. (2007). Compact dynamical model of brain activity. Physical Review E, 75, 031907/1–10.

    Google Scholar 

  • Klyachko, V. A., & Stevens, C. F. (2003). Connectivity optimization and the positioning of cortical areas. In Proceedings of the National Academy of Science of the United States of America, 100, 7937–7941.

  • Kristan, W. B. (2007). A push-me pull-me neural design. Science, 315, 339–340.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology, 39, 337–388.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, P. L. (1995). Towards a physics of neocortex. In P. L. Nunez (Ed.), Neocortical dynamics and human EEG rhythms (pp. 111). New York: Oxford University Press.

    Google Scholar 

  • Prill, R. J., Iglesias, P. A., & Levchenko, A. (2005). Dynamic properties of network motifs contribute to biological network organization. PLoS Biology, 3, 1881–1892.

    Article  CAS  Google Scholar 

  • Rajan, K., & Abbott, L. F. (2006). Eigenvalue spectra of random matrices for neural networks. Physical Review Letters, 97, 188104/1–4.

    Article  CAS  Google Scholar 

  • Robinson, P. A. (2007). Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data. Biological Cybernetics, 97, 317–335.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., Rowe, D. L., & O’Conner, S. C. (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapping, 23, 53–72.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., & Rowe, D. L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65, 041924/1–9.

    Article  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., Rowe, D. L., & O’Connor, S. C. (2003). Neurophysical modeling of brain dynamics. Neuropsychopharmacology, 28, s74–s79.

    Article  PubMed  Google Scholar 

  • Robinson, P. A., Rennie, C. J., & Wright, J. J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.

    Article  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., Wright, J. J., Bahramali, H., Gordon, E., & Rowe, D. L. (2001). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63, 0211903/1–18.

    Google Scholar 

  • Robinson, P. A., Rennie, C. J., Wright, J. J., & Bourke, P. D. (1998). Steady states and global dynamics of electrical activity in the cerebral cortex. Physical Review E, 58, 3557–3571.

    Article  CAS  Google Scholar 

  • Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2, 533–550.

    Article  CAS  Google Scholar 

  • Scannell, J. W., Blakemore, C., & Young, M. P. (1995). Analysis of connectivity in the cat cerebral cortex. Journal of Neuroscience, 15, 1463–1483.

    PubMed  CAS  Google Scholar 

  • Sommers, H. J., Crisanti, A., Sompolinsky, H., & Stein, Y. (1998). Spectrum of large random asymmetric matrices. Physical Review Letters, 60, 1895–1898.

    Article  Google Scholar 

  • Sporns, O. (2002). Graph theory methods for the analysis of neural connectivity patterns. In R. Kötter (Ed.), Neuroscience databases. A practical guide (pp. 169–183). Boston: Klüwer.

    Google Scholar 

  • Sporns, O. (2003). Network analysis, complexity, and the brain function. Complexity, 8, 56–60.

    Article  Google Scholar 

  • Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Neuroscience, 8, 418–425.

    Article  Google Scholar 

  • Sporns, O., & Kötter, R. (2004). Motifs in brain networks. PLoS Biology, 2, 1910–1918.

    Article  CAS  Google Scholar 

  • Sporns, O., Tononi, G., & Edelman, G. M. (2000). Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10, 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–161.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1, e42/245–251.

    Article  CAS  Google Scholar 

  • Stam, C., Pijn, J. P. M., Suffczynski, P., & da Silva, F. H. L. (1999). Dynamics of the human alpha rhythm: Evidence for non-linearity? Clinical Neurophysiology, 110, 1801–1812.

    Article  PubMed  CAS  Google Scholar 

  • Variano, E. A., McCoy, J. H., & Lipson, H. (2004). Networks, dynamics, and modularity. Physical Review Letters, 92, 188701/1–4.

    Article  CAS  Google Scholar 

  • Vreeswijk, C. V., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724–1726.

    Article  PubMed  Google Scholar 

  • Wigner, E. (1967). Random matrices in physics. SIAM Review, 9, 1–23.

    Article  Google Scholar 

  • Wright, J. J., Robinson, P. A., Rennie, C. J., Gordan, E., Bourke, P. D., Chapman, C. L., et al. (2001). Towards an integrated continuum model of cerebral dynamics: The cerebral rhythms, synchronous oscillation and cortical stability. BioSystems, 63, 71–88.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. (2000). The architecture of visual cortex and inferential processes in vision. Spatial Vision, 13, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, C., Zemanová, L., Hilgetag, C. C., & Kurths, K. (2006). Hierarchical organization unveiled by functional connectivity in complex brain networks. Physical Review Letter, 97, 238103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council and the Westmead Millennium Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Gray.

Additional information

Action Editor: Steven J. Schiff

Appendices

Appendix A: Brain dynamics model

This appendix summarizes the general brain dynamics model and describes the linearization and transfer to Fourier space that leads to Eq. (1) in Section 2.1. Further details about this model can be found in (Robinson et al. 2002, 2004; Wright et al. 2001).

The cell body potential V a of neurons in neural population a results when synaptic inputs from afferent neurons in other populations are summed after being filtered and smeared out in time as a result of receptor dynamics and passage through the dendritic tree. It approximately obeys the equation

$$ V_a({\bf r},t) = \sum_b V_{\!ab} ({\bf r},t) $$
(39)

where V ab is defined by the differential equation

$$ \label{eq:am1} D_{\!ab}V_{\!ab}({\bf r},t) = \nu_{\!ab} \phi_b({\bf r},t-\tau_{\!ab}), $$
(40)
$$ \label{eq:am2} D_{\!ab} = \frac{1}{\alpha_{\!ab} \beta_{\!ab}}\frac{d^2}{dt^2} + \left[\frac{1}{\alpha_{\!ab}} + \frac{1}{\beta_{\!ab}} \right] \frac{d}{dt} + 1, $$
(41)

where 1/β ab and 1/α ab are the rise and decay times of the cell-body potential produced by an impulse at a dendritic synapse. The right of Eq. (40) involves contributions from other components ϕ b , delayed by a time τ ab owing to anatomical separations. The quantity ν ab  = N ab s ab , N ab is the mean number of synapses from neurons in component b to neurons in component a and s ab is the time integrated strength of the response in neurons of type a to a unit signal from neurons of type b.

The mean firing rates Q a of neurons are nonlinearly related to the mean potentials V a by Q a (r,t) = S[V a (r,t)], where S is a sigmoid function that increases from 0 to Q max as V a increases from − ∞ to ∞. We use

$$ \label{eq:am3} S[V_a ({\bf r},t)]=\frac{{\rm Q_{max}}}{1+exp[-{V_a ({\bf r},t)- \theta}/\sigma']}, $$
(42)

where θ is the mean neural firing threshold, relative to resting, and \(\sigma' \pi / \sqrt{3}\) is its standard deviation.

The mean firing rate generated by each component gives rise to a neural pulse, whose average over short time scales forms a field ϕ a (r,t) that propagates at a velocity v a through axons with a characteristic range r a . These pulses spread out and dissipate if not regenerated. To a good approximation, this type of propagation obeys a damped-wave equation

$$ \label{eq:am4} \left( \frac{1}{\gamma^{2}_{a}}\frac{\partial^2}{\partial t^2} +\frac{2}{\gamma_{a}} \frac{\partial}{\partial t} +1-r_{a}^{2} \nabla^2 \right) \phi_a ({\bf r},t) = S[V_a ({\bf r},t)], $$
(43)

where γ a  = v a / r a and r a is the mean range of axons a.

Linearization about an assumed steady state gives

$$ \label{eq:am5} D_a \phi_a ({\bf r},t) = \rho_a V_a({\bf r},t), $$
(44)
$$ \label{eq:am6} D_a = \frac{1}{\gamma_{a}^{2}}\frac{\partial^2}{\partial t^2} +\frac{2}{\gamma_{a}} \frac{\partial}{\partial t}+ 1-r_{a}^{2} \nabla^2, $$
(45)

to first order, where ρ a  = dQ a (V a )/dV a is the slope of Eq. (42), at the assumed steady state value of V a . Henceforth, the symbols ϕ a and V a denote linear perturbations to the steady state values, since there is no possibility of confusion.

Fourier transforming Eqs. (40)–(45) in time and eliminating V a yields

$$ \label{eq:am7} D_a(\omega) \phi_a({\bf r},\omega)= \sum_b J_{ab}(\omega) \phi_b({\bf r}, \omega), $$
(46)

where

$$ J_{ab}(\omega)=L_{ab}(\omega)G_{ab} e^{i\omega\tau_{ab}}, $$
(47)
$$ D_a (\omega)=(1-i \omega / \gamma_a )^2-r_a^2 \nabla^2, $$
(48)
$$ L_{ab}(\omega)=\frac{\alpha_{ab}\beta_{ab}}{(\alpha_{ab} -i \omega)(\beta_{ab}-i \omega)}, $$
(49)
$$ G_{ab}=\rho_a \nu_{ab}, $$
(50)

where \([L_{ab}(\omega)]^{-1}\) is the temporal Fourier transform of Eq. (41). Equation (46) describes the linear perturbations of ϕ a in Fourier space about the assumed steady state. It reduces to Eq. (1) in the text under the assumptions described in Section 2.1.

Appendix B: Spectra and stability of brain networks with randomly distributed inhibitory connections

Previously we studied the spectrum and stability of RCNs (Gray and Robinson 2008b). In this appendix we summarize the results in (Gray and Robinson 2008b) so comparisons can be made with the results in Section 4. RCNs have the same overall gain distribution as RPNs with gain matrix entries distributed with a mean g and variance σ 2 given by Eqs. (14) and (15), respectively.

The spectrum of RCNs is accurately described by the results of random matrix theory (Füredi and Komlós 1981; Gray and Robinson 2008a; Sommers et al. 1988) and can be approximated by the superposition of two distributions. The first distribution, called the principal distribution, denoted ρ rp (x), represents the distribution of an eigenvalue in the spectrum which is real and normally distributed with mean ng and variance σ 2; i.e.,

$$ \label{eq:prineqr} \rho_{rp} (x) = \frac{1}{\sigma\sqrt{2\pi}} {\rm exp}\left[-\left(\frac{x-ng}{2\sigma}\right)\right]. $$
(51)

The second distribution called the bulk distribution, denoted ρ rb (λ), represents the distribution of the other n − 1 eigenvalues. The bulk distribution approximately equals (with equality as n → ∞)

$$ \label{eq:rsomeq} \rho_{rb}(\lambda) = (\pi n\sigma^2 )^{-1}, $$
(52)

if x 2 + y 2 ≤  2, and 0 otherwise, where λ = Reλ + iImλ = x + iy. Our work in (Gray and Robinson 2008a) showed that if g ≫ σ 2 > 0, the principal and bulk distributions will be clearly distinguishable from each other and the principal distribution will be the distribution of the dominant eigenvalue λ 1. If g ≈ σ 2 then the principal and bulk distributions overlap, while if σ 2 ≫ g the bulk distribution will completely overlap the principal distribution and the entire spectral distribution is given by Eq. (52).

Equation (52) shows that at least n − 1 eigenvalues of large random gain matrices will be uniformly distributed within a circle centered on the origin with radius \(\sigma\sqrt{n}\). The projection of Eq. (52) onto the real axis is given by

$$ \label{eq:wscl} \rho_{rx} (x)= \int \rho_{rb}(\lambda) dy = \frac{2}{\pi n\sigma^2}\sqrt{n\sigma^2 -x^2}, $$
(53)

if \(|x| \leq \sigma\sqrt{n}\) and ρ rx (0) = 0 otherwise; this is Wigner’s semicircle law (Sommers et al. 1988; Wigner 1967).

The probability P s that a large random brain network is stable equals the probability that all the eigenvalues in its spectrum satisfy Eq. (9). In (Gray and Robinson 2008a) we showed that the expected probability P s that a random brain network is stable approximately equals

$$ \begin{array}{rcl} \label{eq:rpos} P_{s}&=& \frac{1}{2}\left[1+{\rm erf}\left(\frac{1-ng}{\sigma\sqrt{2}}\right)\right] \\ \\ &&\times\left[ \frac{1}{2} + \frac{1}{\pi} {\rm sin}^{-1}\left( \frac{1}{\sigma\sqrt{n}}\right) + \frac{\sqrt{n\sigma^2 -1}}{n\pi\sigma^2}\right]^{n-1}. \end{array} $$
(54)

The first term of this product is the probability that principal eigenvalue is less than one while the second term is the probability that all the eigenvalues in the bulk spectrum have real part less than one. Equation (54) shows that P s →0 as n → ∞ if ng > 1 and 2 > 1.

Appendix C: Rajan-Abbott distribution potential

In this appendix we describe the spectral density potential function ψ derived by Rajan and Abbott (Rajan and Abbott 2006) who termed ψ a potential because the spectral density only depends on ψ’s derivatives. To avoid confusion we change the notation used in (Rajan and Abbott 2006) so that it matches what we use here. These results are used in Section 3 to theoretically calculate ρ b (λ) for random networks with inhibitory populations [Eq. (25)].

The potential derived by Rajan and Abbott is

$$ \label{eq:psi} \psi=\ln \left[ \frac{1+q}{q^{1-p_i}} \right] + \frac{r^2(q\epsilon +1)}{q+1}, $$
(55)

where

$$ \begin{array}{rcl} \label{eq:q} q&=&\frac{(1-\epsilon)r^2 + 2(1-p_i)-1}{2p_i}\\ \\ && + \frac{\sqrt{[(1-\epsilon)r^2-1]^2 + 4(1-p_i)(1-\epsilon)r^2}}{2p_i}. \end{array} $$
(56)

The eigenvalue density inside the circle can be calculated using Eq. (20) via

$$ \label{eq:psi1} \psi'=q'\left[\frac{1+\epsilon r^2}{q+1} - \frac{1-p_i}{q}- \frac{r^2(\epsilon q+1)}{(q+1)^2}\right] +\frac{\epsilon q+1}{q+1}, $$
(57)

and

$$ \begin{array}{rcl} \label{eq:psi2} \psi'' & = & q''\left[\frac{1+\epsilon r^2}{q+1} - \frac{1-p_i}{q} - \frac{r^2(\epsilon q+1)}{(q+1)^2}\right] \\\\& & +2q'\left[\frac{\epsilon}{q+1}-\frac{\epsilon q+1}{(q+1)^2}\right] \\\\ & &+ \left(q'\right)^2\left[\frac{-(1+2\epsilon r^2)}{(q+1)^2}+\frac{1-p_i}{q^2} +\frac{2r^2 (\epsilon q+1)}{(q+1)^3}\right], \end{array} $$
(58)

where, from Eq. (56),

$$ \label{eq:q1} q'=\frac{1\!-\!\epsilon}{2p_i}\left[1\!+\!\frac{(1\!-\!\epsilon)r^2 \!-\!1\!+\! 2(1\!-\!p_i)}{\sqrt{[(1\!-\!\epsilon)r^2\!-\!1]^!+\!4(1\!-\!p_i)(1\!-\!\epsilon)r^2}}\right], $$
(59)

and

$$ \begin{array}{rcl} \label{eq:q2} q'' & = &\frac{(1-\epsilon)^2}{2p_i\sqrt{\{(1-\epsilon)r^2-1\}^2+4f(1-\epsilon)r^2}} \\ \\ && \times \left[1-\frac{\{(1-\epsilon)r^2 -1+2(1-p_i)\}^2}{[(1-\epsilon)r^2-1]^2+4(1-p_i) (1-\epsilon)r^2}\right]. \end{array} $$
(60)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, R.T., Robinson, P.A. Stability and structural constraints of random brain networks with excitatory and inhibitory neural populations. J Comput Neurosci 27, 81–101 (2009). https://doi.org/10.1007/s10827-008-0128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0128-0

Keywords