Skip to main content

Advertisement

Log in

Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present an efficient library-based numerical method for simulating the Hodgkin–Huxley (HH) neuronal networks. The key components in our numerical method involve (i) a pre-computed high resolution data library which contains typical neuronal trajectories (i.e., the time-courses of membrane potential and gating variables) during the interval of an action potential (spike), thus allowing us to avoid resolving the spikes in detail and to use large numerical time steps for evolving the HH neuron equations; (ii) an algorithm of spike-spike corrections within the groups of strongly coupled neurons to account for spike-spike interactions in a single large time step. By using the library method, we can evolve the HH networks using time steps one order of magnitude larger than the typical time steps used for resolving the trajectories without the library, while achieving comparable resolution in statistical quantifications of the network activity, such as average firing rate, interspike interval distribution, power spectra of voltage traces. Moreover, our large time steps using the library method can break the stability requirement of standard methods (such as Runge–Kutta (RK) methods) for the original dynamics. We compare our library-based method with RK methods, and find that our method can capture very well phase-locked, synchronous, and chaotic dynamics of HH neuronal networks. It is important to point out that, in essence, our library-based HH neuron solver can be viewed as a numerical reduction of the HH neuron to an integrate-and-fire (I&F) neuronal representation that does not sacrifice the gating dynamics (as normally done in the analytical reduction to an I&F neuron).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aihara, K., & Matsumoto, G. (1986). Chaotic oscillations and bifurcations in squid giant axons. In Chaos, nonlinear science: Theory and applications. Manchester: Manchester University Press.

    Google Scholar 

  • Cai, D., Rangan, A. V., & McLaughlin, D. W. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in v1. Proceedings of the National Academy of Sciences, USA, 102, 5868–5873.

    Article  CAS  Google Scholar 

  • Campbell, D., & Rose, H. (Eds.) (1983). Order in chaos. Physica D, 7, 1–362.

    Article  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.

    Google Scholar 

  • Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letters, 94, 158101–158104.

    Article  PubMed  Google Scholar 

  • Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Guckenheimer, J., & Oliva, R. A. (2002). Chaos in the Hodgkin.Huxley model. SIAM Journal on Applied Dynamical Systems, 1, 105–114.

    Article  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10, 467–483.

    Article  CAS  PubMed  Google Scholar 

  • Hansel, D., & Sompolinsky, H. (1992). Synchronization and computation in a chaotic neural network. Physical Review Letters, 68, 718–721.

    Article  PubMed  Google Scholar 

  • Hansel, D., & Sompolinsky, H. (1996). Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience, 3, 7–34.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    CAS  PubMed  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.

    Google Scholar 

  • Kosmidis, E. K., & Pakdaman, K. (2003). An analysis of the reliability phenomenon in the FitzHugh-Nagumo model. Journal of Computational Neuroscience, 14, 5–22.

    Article  PubMed  Google Scholar 

  • Lin, K. (2006). Entrainment and chaos in a pulse-driven Hodgkin–Huxley oscillator. SIAM Journal on Applied Dynamical Systems, 5, 179–204.

    Article  Google Scholar 

  • Mainen, Z., & Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  • Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences, USA, 97, 8087–8092.

    Article  CAS  Google Scholar 

  • Parker, T. S., & Chua, L. O. (1989). Practical numerical algorithms for chaotic systems. New York: Springer.

    Google Scholar 

  • Rangan, A. V., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22, 81–100.

    Article  PubMed  Google Scholar 

  • Rangan, A. V., Cai, D., & McLaughlin, D. W. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of the National Academy of Sciences, USA, 102, 18793–18800.

    Article  CAS  Google Scholar 

  • Reutimann, J., Giugliano, M., & Fusi, S. (2003). Event-based simulation of spiking neurons with stochastic dynamics. Neural Computation, 15, 811–830.

    Article  PubMed  Google Scholar 

  • Rinzel, I., & Ermentrout, G. B. (1998). Analysis of neuronal excitability (2nd ed.). In Methods in neuronal modeling: From ions to networks. Cambridge: MIT Press.

    Google Scholar 

  • Roa, M. A. D., Copelli, M., Kinouchi, O., & Caticha, N. (2007). Scaling law for the transient behavior of type-II neuron models. Physical Review E, 75, 021911.

    Article  CAS  Google Scholar 

  • Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70, 1966–1969.

    Article  Google Scholar 

  • Schuster, H. G., & Just, W. (2005). Deterministic chaos. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Somers, D., Nelson, S., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.

    CAS  PubMed  Google Scholar 

  • Troyer, T., Krukowski, A., Priebe, N., & Miller, K. (1998). Contrast invariant orientation tuning in cat visual cortex with feedforward tuning and correlation based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.

    CAS  PubMed  Google Scholar 

  • Winfree, A. T. (2001). The geometry of biological time. New York: Springer.

    Google Scholar 

Download references

Acknowledgements

The work was supported by NSF grant DMS-0506396 and a grant from the Swartz foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Sun.

Additional information

Action Editor: David Golomb

Appendix: Parameter values for the Hodgkin–Huxley equations

Appendix: Parameter values for the Hodgkin–Huxley equations

Parameter values or ranges and function definitions of the Hodgkin–Huxley model are as follows (Dayan and Abbott 2001):

$$\begin{array}{l} G_{\rm Na}=120{\rm mS/cm^2}, \ \ V_{\rm Na}=50{\rm mV}, \\ G_{\rm K}=36{\rm mS/cm^2}, \ \ V_{\rm K}=-77{\rm mV}, \\ G_{\rm L}=0.3{\rm mS/cm^2}, \ \ V_{\rm L}=-54.387{\rm mV}, \\ C =1{\rm \mu F/cm^2}, \ \ V_{\rm G}^{\rm E} =0{\rm mV}, \ \ V_{\rm G}^{\rm I} =-80{\rm mV}, \\ F^{\rm E}=0.05\sim0.1{\rm mS/cm^2}, \ \ S^{\rm E}=0.05\sim1.0{\rm mS/cm^2}, \\ F^{\rm I}=0.01\sim0.05{\rm mS/cm^2}, \ \ S^{\rm I}=0.05\sim1.0{\rm mS/cm^2}, \\ \sigma_{\rm r}^{\rm E}=0.5{\rm ms}, \ \ \sigma_{\rm d}^{\rm E}=3.0{\rm ms}, \\ \sigma_{\rm r}^{\rm I}=0.5{\rm ms}, \ \ \sigma_{\rm d}^{\rm I}=7.0{\rm ms}, \\ \alpha_m(V) = 0.1(V+40)/(1-\exp{(-(V+40)/10)}), \\ \beta_m(V) = 4 \exp{(-(V+65)/18)}, \\ \alpha_h(V) = 0.07 \exp{(-(V+65)/20)}, \\ \beta_h(V) = 1/(1+\exp{(-(35+V)/10})), \\ \alpha_n(V) = 0.01(V+55)/(1-\exp{(-(V+55)/10)}), \\ \beta_n(V) = 0.125 \exp{(-(V+65)/80)}. \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Zhou, D., Rangan, A.V. et al. Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation. J Comput Neurosci 27, 369–390 (2009). https://doi.org/10.1007/s10827-009-0151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0151-9

Keywords

Navigation