Skip to main content
Log in

Implications of gain modulation in brainstem circuits: VOR control system

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Gain modulation is believed to be a common integration mechanism employed by neurons to combine information from various sources. Although gain fields have been shown to exist in some cortical and subcortical areas of the brain, their existence has not been explored in the brainstem. In the present modeling study, we develop a physiologically relevant simplified model for the angular vestibulo-ocular reflex (VOR) to show that gain modulation could also be the underlying mechanism that modifies VOR function with sensorimotor context (i.e. concurrent eye positions and stimulus intensity). The resulting nonlinear model is further extended to generate both slow and quick phases of the VOR. Through simulation of the hybrid nonlinear model we show that disconjugate eye movements during the VOR are an inevitable consequence of the existence of such gain fields in the bilateral VOR pathway. Finally, we will explore the properties of the predicted disconjugate component. We will demonstrate that the apparent phase characteristics of the disconjugate response vary with the concurrent conjugate component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen, R., & Mountcastle, V. (1983). The influence of the angle of gaze upon the excitability of light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3, 532–548.

    CAS  PubMed  Google Scholar 

  • Bizzi, E., Giszter, S., Loeb, E., Mussa-Ivaldi, F., & Saltiel, P. (1995). Modular organization of motor behavior in frog’s spinal cord. Journal of Neuroscience, 18, 442–446.

    CAS  Google Scholar 

  • Brotchie, P., Andersen, R., Snyder, L., & Goodman, S. (1995). Head position signals used by parietal neurons to encode location of visual stimuli. Nature, 375, 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Buizza, A., Avanzini, P., Schmid, R. (1981). Mathematical and computational methods in physiology. Oxford: Pergamon.

    Google Scholar 

  • Busettini, C., Miles, F., Schwarz, U., & Carl, J. (1994). Human ocular responses to translation of the observer and of the scene: dependence on viewing distance. Experimental Brain Research, 100, 484–94.

    Article  CAS  Google Scholar 

  • Cartwright, A., Gilchrist, D., Burgess, A., & Curthoys, I. (2003). A realistic neural network simulation of both slow and quick pahse components of the guinea pig vor. Experimental Brain Research, 149, 299–311.

    Google Scholar 

  • Chan, W., & Galiana, H. (2005). Integrator function in the oculomotor system is dependent on sensory context. Journal of Neurophysiology, 93, 3709–3717.

    Article  CAS  PubMed  Google Scholar 

  • Chen-Huang, C., & McCrea, R. (1997). Viewing distance related changes in the linear responses of vor neurons during combined angular and linear head movements. Soc Neurosci Abstr, 23, 7.

    Google Scholar 

  • Chen-Huang, C., & McCrea, R. (1998). Contribution of vestibular nerve irregular afferents to viewing distance-related changes in the vestibulo-ocular reflex. Experimental Brain Research, 119, 116–130.

    Article  CAS  Google Scholar 

  • Chen-Huang, C., & McCrea, R. (1999). Effects of viewing distance on the responses of horizontal canal-related secondary vestibular neurons during angular head rotation. Journal of Neurophysiology, 81, 2517–2537.

    CAS  PubMed  Google Scholar 

  • Cheron, G., & Godaux, E. (1987). Disabling of the oculomotor nuclei integrator by kainic acid injections in the prepositus-vestibular complex of the cat. Journal of Physiology (London), 394, 267–290.

    CAS  Google Scholar 

  • Collewijn, H., & Noorduin, H. (1972). Conjugate and disconjugate optokinetic eye movements in the rabbit, evoked by rotatory and translatory motion. Pflugers Archives, 335, 173–185.

    Article  CAS  Google Scholar 

  • Crane, B., & Demer, J. (1997). Human gaze stabilization during natural activities: Translation, rotation, magnification and target distance effects. Journal of Neurophysiology, 78, 2129–2144.

    CAS  PubMed  Google Scholar 

  • Crane, B., & Demer, J. (1998). Human horizontal vestibulo-ocular reflex initiation: Effects of acceleration, target distance, and unilateral deafferentation. Journal of Neurophysiology, 80, 1151–1166.

    CAS  PubMed  Google Scholar 

  • Crane, B., Viirre, E., & Demer, J. (1997). The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration. Experimental Brain Research, 114, 304–320.

    Article  CAS  Google Scholar 

  • Crawford, J., & Vilis, T. (1993). Modularity and parallel processing in the oculomotor integrator. Experimental Brain Research, 96, 443–456.

    Article  CAS  Google Scholar 

  • Cullen, K., & McCrea, R. (1993). Firing behavior of brainstem neurons during voluntary cancellation of the horizontal vestibuloocular reflex I. secondary vestibular neurons. Journal of Neurophysiology, 70, 828–843.

    CAS  PubMed  Google Scholar 

  • Cullen, K., Chen-Huang, C., & McCrea, R. (1993). Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. II. eye movement related neurons. Journal of Neurophysiology, 70, 844–856.

    CAS  PubMed  Google Scholar 

  • Galiana, H. (1991). A nystagmus strategy to linearize the vestibulo-ocular reflex. IEEE Transactions on Biomedical Engineering, 38, 532–543.

    Article  CAS  PubMed  Google Scholar 

  • Galiana, H., & Outerbridge, J. (1984). A bilateral model for central neural pathways in the vestibuloocular reflex. Journal of Neurophysiology, 51, 210–241.

    CAS  PubMed  Google Scholar 

  • Green, A., & Galiana, H. (1996). Exploring sites for short-term vor modulation using a bilateral model. Annals of the New York Academy of Sciences, 781, 625–628.

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka, O., Igusa, Y., & Imai, H. (1980). Inhibitory connections of nystagmus-related reticular burst neurons with neurons in the abducens, prepositus hypoglossi and vestibular nuclei in the cat. Experimental Brain Research, 39, 301–311.

    CAS  Google Scholar 

  • Hine, T. (1990). Effects of asymmetric vergence on compensatory eye movements during active head rotation. J Vestib Res, 1, 357–371.

    PubMed  Google Scholar 

  • Hine, T., & Thorn, F. (1987). Compensatory eye movements during active head rotation for near targets: effects of imagination, rapid head oscillation and vergence. Vision Research, 27, 1639–1657.

    Article  CAS  PubMed  Google Scholar 

  • Igusa, Y., Sasaki, S., & Shimazu, H. (1980). Excitatory premotor burst neurons in the cat pontine reticular formation related to the quick phase of vestibular nystagmus. Brain Research, 182, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Ito, J., Markham, C., & Curthoys, I. (1986). Direct projection of type II vestibular neurons to eye movement-related pause neurons in the cat pontine reticular formation. Experimental Neurology, 91, 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Keller, E. (1974). Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology, 37, 316–332.

    CAS  PubMed  Google Scholar 

  • Khojasteh, E., & Galiana, H. (2006). A nonlinear model for context-dependent modulation of the binocular VOR. IEEE Transactions on Biomedical Engineering, 53, 986–995.

    Article  PubMed  Google Scholar 

  • Khojasteh, E., & Galiana, H. (2007). Modulation of vergence during the vestibulo-ocular reflex. In Proc 29th annu int’l IEEE EMBS conf (pp. 5377–5380). Lyon, France.

  • Khojasteh, E., & Galiana, H. (2008). Neural computation in the binocular vor circuit: A theoretical study. In Proc 30th annu int’l IEEE EMBS conf (pp. 5518–5521). Vancouver, Canada.

  • Khojasteh-Lakelayeh, E., & Galiana, H. (2003). Context-dependence of the binocular vor; an emerging property of brainstem circuit topology. In Proc 25th annu int’l IEEE EMBS conf (Vol. 2, pp. 1738–1741). Cancun, Mexico.

  • Kitama, T., Ohki, Y., Shimazu, H., Tanaka, M., & Yoshida, K. (1995). Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: Functional properties and afferent organization of the burster-driving neurons. Journal of Neurophysiology, 74, 273–287.

    CAS  PubMed  Google Scholar 

  • Lasker, D., Ramat, S., Carey, J., & Minor, L. (2002). Vergence-mediated modulation of the human horizontal angular vor provides evidence of pathway-specific changes in vor dynamics. Annals of the New York Academy of Sciences, 956, 324–337.

    Article  PubMed  Google Scholar 

  • Lisberger, S., Pavelco, T., & Broussard, D. (1994). Neural basis for motor learning in the vestibuloocular reflex of primates. I. changes in the responses of brain stem neurons. Journal of Neurophysiology, 72, 928–953.

    CAS  PubMed  Google Scholar 

  • Luebke, A., & Robinson, D. (1994). Gain changes of the cat’s vestibulo-ocular reflex after flocculus deactivation. Experimental Brain Research, 98, 379–390.

    Article  CAS  Google Scholar 

  • Maruta, J., MacDougall, H., Simpson, J., Raphan, T., & Cohen, B. (2006). Eye velocity asymmetry, ocular orientation, and convergence induced by angular rotation in the rabbit. Vision Research, 46, 961–969.

    Article  PubMed  Google Scholar 

  • McConville, K., Tomlinson, R., & NA, E. (1996). Behavior of eye-movement-related cells in the vestibular nuclei during combined rotational and translational stimuli. Journal of Neurophysiology, 76, 3136–3148.

    CAS  PubMed  Google Scholar 

  • McCrea, R., Chen-Huang, C., Belton, T., & Gdowski, G. (1996). Behavior contingent processing of vestibular sensory signals in the vestibular nuclei. Annals of the New York Academy of Sciences, 781, 292–303.

    Article  CAS  PubMed  Google Scholar 

  • Medendorp, W., Gisbergen, J. V., Pelt, S. V., & Gielen, C. (2000). Context compensation in the vestibuloocular reflex during active head rotations. Journal of Neurophysiology, 84, 2904–2917.

    CAS  PubMed  Google Scholar 

  • Minor, L., Lasker, D., Backous, D., & Hullar, T. (1999). Horizontal vestibuloocular reflex evoked by high- acceleration rotations in the squirrel monkey. I. normal responses. Journal of Neurophysiology, 82, 1254–1270.

    CAS  PubMed  Google Scholar 

  • Paige, G. (1983). Vestibuloocular reflex and its interaction with visual following mechanisms in squirrel monkey. I. response characteristics in normal animals. Journal of Neurophysiology, 49, 134–151.

    CAS  PubMed  Google Scholar 

  • Paige, G., Telford, L., Seidman, S., & Barnes, G. (1998). Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. Journal of Neurophysiology, 80, 2391–2404.

    CAS  PubMed  Google Scholar 

  • Pastor, A., Cruz, R. D. L., & Baker, R. (1992). Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation. Journal of Neurophysiology, 68, 2003–2015.

    CAS  PubMed  Google Scholar 

  • Precht, W., & Anderson, J. (1979). Effects of cerebellectomy on the cat’s vertical vestibuloocular reflex. Pflügers Archiv, 382, 51–55.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. (1981). The use of control systems analysis in the neurophysiology of eye movements. Annual Review of Neuroscience, 4, 463–503.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. (1989). Integrating with neurons. Annual Review of Neuroscience, 12, 33–45.

    Article  CAS  PubMed  Google Scholar 

  • Salinas, E., & Thier, P. (2000). Gain modulation: A major computational principle of the central nervous system. Neuron, 27, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Scudder, C., & Fuchs, A. (1992). Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. Journal of Neurophysiology, 68, 244–264.

    CAS  PubMed  Google Scholar 

  • Shimazu, H., & Precht, W. (1966). Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of Neurophysiology, 29, 467–492.

    CAS  PubMed  Google Scholar 

  • Snyder, L., & King, W. (1992). Effects of viewing distance and location of the axis of head rotation on the monkey’s vestibuloocular reflex. I. eye movement responses. Journal of Neurophysiology, 67, 861–874.

    CAS  PubMed  Google Scholar 

  • Strassman, A., Highstein, S., & McCrea, R. (1986a). Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. excitatory burst neurons. Journal of Comparative Neurology, 249, 337–357.

    Article  CAS  Google Scholar 

  • Strassman, A., Highstein, S., & McCrea, R. (1986b). Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. inhibitory burst neurons. Journal of Comparative Neurology, 249, 358–380.

    Article  CAS  PubMed  Google Scholar 

  • Viirre, E., Tweed, D., Milner, K., & Villis, T. (1986). A reexamination of the gain of the vestibuloocular reflex. Journal of Neurophysiology, 56, 439–450.

    CAS  PubMed  Google Scholar 

  • Zee, D., Yamazaki, A., Buttler, P., & GuCer, G. (1981). Effects of ablation of flocculus and paraflocculus of eye movements in primate. Journal of Neurophysiology 46, 878–899.

    CAS  PubMed  Google Scholar 

  • Zhou, W., & King, W. (1996). Ocular selectivity of units in oculomotor pathways. Annals of the New York Academy of Sciences, 781, 724–728.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, W., Youguo, X., Simpson, I., & Yidao, C. (2007). Multiplicative computation in the vestibulo-ocular reflex (vor). Journal of Neurophysiology, 97, 2780–2789.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Canadian 797 Institute of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Khojasteh.

Additional information

Action Editor: Carson C. Chow

Appendix

Appendix

The addition of cerebellar pathways to the current model can improve the gaze holding time constant in darkness. To demonstrate this, two of the many possible scenarios are presented in Fig. 9. Dashed pathways in Fig. 9(a), (b) show postulated pathways to-from the cerebellum. Both (a) and (b) include the inhibitory pathway from cerebellar gaze-velocity Purkinje cells (PJ) to the EHV (or FTN) neurons. PJ neurons receive ipsilateral vestibular input from primary afferents. They also receive an input from the paramedian tract neurons in the brainstem. In (a) we assume that they receive the efference copy of eye position commands, and in (b), a copy of the motor neuron drive. This is only a simplistic assumption for the sake of demonstrating how adding cerebellar loops will improve gaze holding in the model. An extensive study of the literature will be needed to exactly determine the cell types that project to the PJ cells.

Fig. 9
figure 9

(a, b) show two possible alternatives for adding cerebellar pathways to the slow-phase structure.. Dashed lines show cerebellar connections

The two gaze holding time constants from the new structure in Fig. 9(a) will be:

$$ T_1 \! = \! \frac{T_f(1\!-\!c)}{1\!-\!c\!-\!k_f(ad\!+\!q(1\!-\!c)\frac{\partial{g(.)}}{\partial{x}}\mid_{x_0}) \mathbf{-k_fmn(1\!-\!c)\frac{\partial{g(.)}} {\partial{x}}\mid_{x_0}}}\\ $$
(6a)
$$ T_2 \! = \! \frac{T_f(1\!+\!c)}{1\!+\!c\!-k_f(ad\!+\!q(1\!+\!c) \frac{\partial{g(.)}}{\partial{x}}\mid_{x_0})\mathbf{-k_fmn(1\!+\!c)\frac{\partial{g(.)}} {\partial{x}}\mid_{x_0}}} $$
(6b)

The two gaze holding time constants from the new structure in Fig. 9(b) will be:

$$ T_1 \! = \! \frac{T_f(1\!-\!c)(1\mathbf{-mn\frac{\partial{g(.)}}{\partial{x}}\mid_{x_0}})} {(1\!-\!c)(1\mathbf{-mn\frac{\partial{g(.)}}{\partial{x}}\mid_{x_0}})\!-\!k_f(ad\!+\!q(1\!-\!c) \frac{\partial{g(.)}}{\partial{x}}\mid_{x_0})}\\ $$
(7a)
$$ T_2 = \frac{T_f(1\!+\!c)(1\!\mathbf{-mn\frac{\partial{g(.)}}{\partial{x}}\mid_{x_0}})} {(1\!+\!c)(1\mathbf{-mn\frac{\partial{g(.)}}{\partial{x}}\mid_{x_0}})\!-\!k_f(ad\!+\!q(1\!+\!c)\frac{\partial{g(.)}} {\partial{x}}\mid_{x_0})} $$
(7b)

The effect of adding the cerebellar loop is emphasized with bold letters in the above equations. By comparing the new time constants (Eq. (6a), (6b), (7a), (7b)) with Eqs. (2a) and (2b), it can be shown that the model time constants will become larger in both structures of Fig. 9. However, as mentioned in the Discussion, adding new pathways may require adjustments to some model parameters to preserve the desired global performance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khojasteh, E., Galiana, H.L. Implications of gain modulation in brainstem circuits: VOR control system. J Comput Neurosci 27, 437–451 (2009). https://doi.org/10.1007/s10827-009-0156-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0156-4

Keywords

Navigation