Abstract
Spiking and bursting patterns of neurons are characterized by a high degree of variability. A single neuron can demonstrate endogenously various bursting patterns, changing in response to external disturbances due to synapses, or to intrinsic factors such as channel noise. We argue that in a model of the leech heart interneuron existing variations of bursting patterns are significantly enhanced by a small noise. In the absence of noise this model shows periodic bursting with fixed numbers of interspikes for most parameter values. As the parameter of activation kinetics of a slow potassium current is shifted to more hyperpolarized values of the membrane potential, the model undergoes a sequence of incremental spike adding transitions accumulating towards a periodic tonic spiking activity. Within a narrow parameter window around every spike adding transition, spike alteration of bursting is deterministically chaotic due to homoclinic bifurcations of a saddle periodic orbit. We have found that near these transitions the interneuron model becomes extremely sensitive to small random perturbations that cause a wide expansion and overlapping of the chaotic windows. The chaotic behavior is characterized by positive values of the largest Lyapunov exponent, and of the Shannon entropy of probability distribution of spike numbers per burst. The windows of chaotic dynamics resemble the Arnold tongues being plotted in the parameter plane, where the noise intensity serves as a second control parameter. We determine the critical noise intensities above which the interneuron model generates only irregular bursting within the overlapped windows.













Similar content being viewed by others
Notes
The stable periodic orbit corresponds to tonic spiking.
References
Arnold, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., & Shilnikov, L. P. (1994). Bifurcation theory. Dynamical systems. Encyclopaedia of mathematical sciences (Vol. V). New York: Springer.
Bal, T., Nagy, F., & Moulins, M. (1988). The pyloric central pattern generator in crustacea: A set of conditional neural oscillators. Journal of Comparative Physiology A, 163(6), 715–727.
Belykh, V. N., Belykh, I. V., Colding-Jorgensen, M., & Mosekilde, E. (2000). Homoclinic bifurcations leading to bursting oscillations in cell models. The European Physical Journal E—Soft Matter, 3(3), 205–219.
Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413–439.
Bulsara, A. R., Schieve, W. C., & Jacobs, E. W. (1990). Homoclinic chaos in systems perturbed by weak langevin noise. Physical Review A, 41(2), 668–681.
Carelli, P. V., Reyes, M. B., Sartorelli, J. C., & Pinto, R. D. (2005). Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. Journal of Neurophysiology, 94(2), 1169–1179.
Channell, P., Cymbalyuk, G., & Shilnikov, A. (2007a). Origin of bursting through homoclinic spike adding in a neuron model. Physical Review Letters, 98(13), 134101.
Channell, P., Cymbalyuk, G., & Shilnikov, A. L. (2007b). Applications of the poincare mapping technique to analysis of neuronal dynamics. Neurocomputing, 70, 10–12.
Chay, T. R. (1985). Chaos in a three-variable model of an excitable cell. Physica D, 16(2), 233–242.
Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.
Clewley, R., Soto-Trevino, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.
Cymbalyuk, G. S., & Calabrese, R. L. (2001). A model of slow plateau-like oscillations based upon the fast Na + current in a window mode. Neurocomputing, 38, 159–166.
Cymbalyuk, G. S., & Shilnikov, A. L. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. Journal of Computational Neuroscience, 18(3), 255–263.
Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.
Deng, B., & Hines, G. (2002). Food chain chaos due to Shilnikov’s orbit. Chaos, 12(3), 533–538.
Elson, R. C., Huerta, R., Abarbanel, H. D., Rabinovich, H. D., & Selverston, A. I. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 82(1), 115–122.
Elson, R. C., Selverston, A. I., Abarbanel, H. D. I., & Rabinovich, M. I. (2002). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 88, 1166–1182.
Fan, Y. S., & Holden, A. V. (1995). Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 3, 439–449.
Fenichel, F. (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.
Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., et al. (2000). Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 10(1), 231–239.
Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2008). Optimal time scale for spike-time reliability: Theory, simulations, and experiments. Journal of Neurophysiology, 99(1), 277–283.
Gavrilov, N. K., & Shilnikov, L. P. (1972). On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Mathematics of the USSR, Sbornik, 17(3), 467–485.
Goldobin, D. S., & Pikovsky, A. (2005). Synchronization and desynchronization of self-sustained oscillators by common noise. Physical Review E, 71, 045201.
Goldobin, D. S., & Pikovsky, A. (2006). Antireliability of noise-driven neurons. Physical Review E, 73, 061906.
Griffiths, R. E., & Pernarowski, M. C. (2006). Return map characterizations for a model of bursting with two slow variables. SIAM Journal on Applied Mathematics, 66(6), 1917–1948.
Gu, H., Yang, M., Li, L., Liu, Z., & Ren, W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport, 13(13), 1657–1660.
Guckenheimer, J. (1996). Towards a global theory of singularly perturbed systems. Progress in Nonlinear Differential Equations and Their Applications, 19, 214–225.
Hayashi, H., & Ishizuka, S. (1995). Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Research, 686(2), 194–206.
Hill, A. A., Lu, J., Masino, M. A., Olsen, O. H., & Calabrese, R. L. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience, 10(3), 281–302.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.
Holden, A. V., & Fan, Y. S. (1992). From simple to simple bursting oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 2, 349–269.
Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.
Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The geometry of excitability and bursting. Cambridge: MIT.
Jaeger, L., & Kantz, H. (1997). Homoclinic tangencies and non-normal jacobians—effects of noise in nonhyperbolic chaotic systems. Physica D, 105(1–3), 79–96.
Jones, C. K. R. T., & Kopell, N. (1994). Tracking invariant-manifolds with differential forms in singularly perturbed systems. Journal of Differential Equations, 108(1), 64–88.
Kramer M., Traub, R. D., & Kopell, N. J. (2008) New dynamics in cerebellar purkinje cells: Torus canards. Physics Review Letters, 101, 068103.
Kopell, N. (1988). Toward a theory of modelling central pattern generators. In A. H., Cohen, S., Rossingol, & S., Grillner (Eds.), Neural control of rhythmic movements in vertebrates (pp. 1–20). New York: Wiley.
Kuske, R., & Baer, S. M. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. Bulletin of Mathematical Biology, 64(3), 447–481.
Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.
Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: Neuronal noise sources. Neural Computation, 11(8), 1797–1829.
Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.
Medvedev, G. M. (2005). Reduction of a model of an excitable cell to a one-dimensional map. Physica D, 202(1–2), 87–106.
Medvedev, G. M. (2006). Transition to bursting via deterministic chaos. Physical Review Letters, 97, 048102.
Mira, C. (1987). Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism. Singapore: World Scientific.
Pedersen, M. G., & Sorensen, M. P. (2007). The effect of noise of β-cell burst period. SIAM Journal on Applied Mathematics, 67, 530–542.
Pei, X., & Moss, F. (1996). Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature, 379(6566), 618–621.
Pontryagin, L. S., & Rodygin, L. V. (1960). Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Soviet Mathematics. Doklady, 1, 611–661.
Rabinovich, M. I., Varona, P., Silverston, A. L., & Abarbanel, H. D. (2006). Dynamics principles in neuroscience. Reviews of Modern Physics, 78(4), 1213–1265.
Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. Lecture Notes in Mathematics, 1151, 304–316.
Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C., Koch & I., Segev (Eds.), Computational neuroscience (pp. 135–169). Cambridge: MIT.
Rinzel, J., & Wang, X. J. (1995). Oscillatory and bursting properties of neurons. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 686–691). Cambridge: MIT.
Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: Coexistence of gamma frequency bursts and highly irregular firing. Neural Computation, 19(5), 1215–1250.
Rowat, P. F., & Elson, R. C. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of Computational Neuroscience, 16(2), 87–112.
Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., & Ditto, W. L. (1994). Controlling chaos in the brain. Nature, 370(6491), 615–620.
Sharkovsky, A. N., Kolyada, S. F., Sivak, A. G., & Fedorenko, V. V. (1997). Dynamics of one-dimensional maps. Mathematics and its applications (Vol. 407). Dordrecht: Kluwer.
Shilnikov, A. L. (1993). On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D, 62(1–4), 338–346.
Shilnikov, A., & Cymbalyuk, G. (2004). Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper. Regular & Chaotic Dynamics, 9, 281–297.
Shilnikov, A. L., Calabrese, R. L., & Cymbalyuk, G. (2005). Mechanism of bistability: Tonic spiking and bursting in a neuron model. Physical Review E, 71, 056214.
Shilnikov, A. L., & Cymbalyuk, G. (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Physical Review Letters, 94(4), 048101.
Shilnikov, A. L., & Kolomiets, M. L. (2008). Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial. International Journal of Bifurcation and Chaos, 18(7), 1–32.
Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. International Journal of Bifurcation and Chaos, 13(11), 3325–3340.
Shilnikov, A. L., & Rulkov, N. F. (2004). Subthreshold oscillations in a map-based neuron model. Physics Letters A, 328(2–3), 177–184.
Shilnikov, L. P., Shilnikov, A. L., Turaev, D., & Chua, L. O. (1998, 2001). Methods of qualitative theory in nonlinear dynamics (Vols. 1 and 2). Singapore: World Scientific.
So, P., Ott, E., Schiff, S. J., Kaplan, D. T., Sauer, T., & Grebogi, C. (1996). Detecting unstable periodic orbits in chaotic experimental data. Physical Review Letters, 76(25), 4705–4708.
Steriade, M., Jones, E. G., & Llinas, R. R. (1990). Thalamic oscillations and signaling. New York: Wiley.
Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.
Su, J., Rubin, J., & Terman, D. (2004). Effects of noise on elliptic bursters. Nonlinearity, 17, 13300157.
Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 51(5), 1418–1450.
Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. Journal of Nonliear Science, 2(2), 135–182.
Tikhonov, A. N. (1948). On the dependence of solutions of differential equations from a small parameter. Matemati(̌c)eskij Sbornik, 22(64), 193–204.
Wang, X. J. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D, 62(1–4), 263–274.
Yang, Z., Qishao, L., & Li, L. (2006). The genesis of period-adding bursting without bursting-chaos in the Chay model. Chaos, Solitons and Fractals, 27(3), 689–697.
Acknowledgements
The authors thank G. Cymbalyuk and R. Clewley for valuable discussions. We are grateful to anonymous reviewers for inspiring critique and useful suggestions. P.C. was supported by a fellowship through the GSU Brains and Behavior program; A.L.S. was supported by the GSU Brains and Behavior program and by the RFFI grant No 050100558. A.N. was supported in part by the Biomimetic Nanoscience and Nanotechnology program of Ohio University. I.F. was supported by the Faculty for the Future Fellowship awarded by the Schlumberger Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: J. Rinzel
Rights and permissions
About this article
Cite this article
Channell, P., Fuwape, I., Neiman, A.B. et al. Variability of bursting patterns in a neuron model in the presence of noise. J Comput Neurosci 27, 527–542 (2009). https://doi.org/10.1007/s10827-009-0167-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-009-0167-1