Abstract
Bicoherence has been used in quantifying quadratic phase coupling (QPC) in electroencephalography (EEG) signals. However, for high-dimensional EEG signals, the calculations of traditional auto– and cross–bicoherences of signals from multiple electrodes are computationally very expensive. This has been compounded by the recognition of the non-stationary character of EEG signals. This paper introduces a new approach, the time-varying canonical bicoherence (CBC) by short-time weighted Fourier transforms, for analyzing QPC nonlinearities of dynamic EEG signals. This new method shows both computational efficiency and simple interpretation of estimated canonical bicoherences. The canonical bicoherence analysis of EEG records, during a human visual stimulus-driven cognitive process, put into evidence of quadratic phase couplings of Beta waves and Delta waves in the frontal regions.







Similar content being viewed by others
References
Akgül, T., Sun, M., Sclabassi, R. J., & Cetin, A. E. (2000). Characterization of sleep spindles using higher order statistics and spectra. IEEE Transactions on Biomedical Engineering, 47(8), 997–1009.
Andrzejak, R. G., Lehnertz, K., Rieke, C., Mormann, F., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite dimensional structures in time series of brain electricat activity: Dependence on recording region and brain state. Physical Review E, Statistical, Nonlinear and Soft Matter Physics, 64, 061907.
Arnold, M., Witte, H., & Schelenz, C. (2002). Time-variant investigation of quadratic phase couplings caused by amplitude modulation in electroencephalic burst-suppression patterns. Journal of Clinical Monitoring and Computing, 17(2), 115–123.
Barnett, T., Johnson, L. C., Naitoh, P., Hicks, N., & Nute, C. (1971). Bispectrum analysis of electroencephalogram signals during waking and sleeping. Science, 172, 401–402.
Bianchi, A. M., Molteni, S. C., Panzica, F., Visani, E., Franceschetti, S., & Cerutti, S. (2004). Spectral and bispectral analysis of the EEG rhythms in basal conditions and during photic stimulation. In Proc. of the 26th annual international conference of the IEEE EMBS. San Francisco, CA, USA.
Birkelund, Y., & Hanssen, A. (1999). Multitaper estimators for bispectra. In Proc. of the IEEE workshop on higher-order statistics (pp. 207–211).
Birkelund, Y., & Hanssen, A. (2000a). Adaptive bispectral estimation using thomson’s multitaper approach. In Proc. of the IEEE adaptive systems for signal processing, communications, and control symposium (AS-SPCC 2000) (pp. 283–288). Lake Louise, Alta., Canada.
Birkelund, Y, & Hanssen, A. (2000b). Multiwindow bispectral estimation. In Proc. of the tenth IEEE signal processing workshop on statistical signal and array processing (pp. 640–644). Pocono Manor, Pennsylvania.
Birkelund, Y., Hanssen, A., & Powers, E. J. (2001). Multitaper estimation of bicoherence. In Proc. of the int. conf. acoust., speech, signal processing (ICASSP 2001) (pp. 3085–3088). Salt Lake City, Utah.
Birkelund, Y., Hanssen, A., & Powers, E. J. (2003). Multitaper estimators of polyspectra. Signal Processing, 83, 545–559.
Boashash, B., & Ristic, B. (1992). Time-varying higher-order spectra and reduced Wigner trispectrum. In F. T. Luk (Ed.), Proc. SPIE, advanced signal processing algorithms, architectures, and implementations III (Vol. 1770, pp. 268–279).
Boeijinga, P. H., & Lopes da Silva, F. H. (1989). Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling. Brain Research, 478, 257–268.
Brillinger, D. R. (1965). An introduction to polyspectra. American Mathematical Society, 36(5), 1351–1374.
Brillinger, D. R. (1970). The frequency analysis of relations between stationary spatial series. In R. Pyke (Ed.), Proceedings of the twelfth biennial seminar of the Canadian mathematical congress, Canadian math. congress (pp. 39–81).
Bronzino, J. D. (2006). Biomedical engineering fundamentals (3rd ed.). Boca Raton: CRC.
Bullock, T. H., Achimowicz, J. Z., Duckrow, R. B., Spencer, S. S., & Iragui-Madoz, V. J. (1997). Bicoherence of intracranial EEG in sleep, wakefulness and seizures. Electroencephalography and Clinical Neurophysiology, 103, 661–678.
Chui, C. (1992). An introduction to wavelets. San Diego: Academic.
Cohen, L. (1995). Time-frequency analysis. Englewood Cliffs: Prentice-Hall.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9–21.
Delorme, A., Rousselet, G., Mace, M., & Fabre-Thorpe, M. (2004). Interaction of bottom-up and top-down processing in the fast visual analysis of natureal scenes. Cognitive Brain Research, 19(2), 103–113.
Dummermuth, G., Huber, P. J., Kleiner, B., & Gasser Th. (1971). Analysis of the interrelations between frequency bands of the EEG by means of the bispectrum; a preliminary study. Electroencephalography and Clinical Neurophysiology, 31, 137–148.
Fackrell, J. (1996). Bispectral analysis of speech signals. PhD thesis, University of Edinhurgh.
Fonollosa, J., & Nikias, C. (1992). Analysis of transient signals using higher-order time-frequency distribution. In Proc. of the int. conf. acoust., speech, signal processing (Vol. 5, pp. 197–200). San Franciso, CA, USA.
Frazer, G., & Boashash, B. (1993). Wigner bispectrum, phase product smoothing and time-varying bispectra. In Proc. of the int. conf. acoust., speech, signal processing (Vol. 4, pp. 101–104). Minneapolis, MN, USA.
Gajraj, R., Doi, M., Mantzaridis, H., & Kenny, G. (1998). Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spectrum during repeated transitions from consciousness to unconsciousness. British Journal of Anaesthesia, 80, 46–52.
Hagihira, S., Takashina, M., Mori, T., Ueyama, H., & Mashimo, T. (2005). What we can know from bispectral analysis of EEG. International Congress Series, 1283, 239–242.
Hanssen, A., & Scharf, L. (2003). A theory of polyspectra for nonstationary stochastic processes. IEEE Transactions on Signal Processing, 51(4), 1243–1252.
Hansson, M., & Lindgren, M. (2001). Multiple-window spectrogram of peaks due to transients in the electroencephalogram. IEEE Transactions on Biomedical Engineering, 48(3), 284–293.
Hasselmann, K., Munk, W. H., & MacDonald, G. (1963). In M. Rosenblatt (Ed.), Bispectra of ocean waves, time series analysis (pp. 125–139). New York: Wiley.
Haubrich, R. (1965). Earth noise, 5 to 500 millicycles per second, 1, spectral stationarity normality, and nonlinearity. Journal of Geophysical Research, 70(6), 1415–1427.
He, H., & Thomson, D. (2009a). Multitaper canonical bicoherence: Part I–definition, multitaper estimation and statistics. IEEE Transactions on Signal Processing, 57(4), 1273–1284.
He, H., & Thomson, D. (2009b). Multitaper canonical bicoherence: Part II–QPC test and its application in geomagnetic data. IEEE Transactions on Signal Processing, 57(4), 1285–1292.
Helbig, M., Schwab, K., Leistritz, L., Eiselt, M., & Witte, H. (2006). Analysis of time-variant quadratic phase couplings in the trace alternant EEG by recursive estimation of 3rd-order time-frequency distributions. Journal of Neuroscience Methods, 157, 168–177.
Hillis, A. J., Neild, S. A., Drinkwater, B. W., & Wilcox, P. D. (2006). Global crack detection using bispectral analysis. Proceedings of the Royal Society A, 462, 1515–1530.
Jakubowski, J., Kwiatos, K., Chwaleba, A., & Osowski, S. (2002). Higher order statistics and neural network for tremor recognition. IEEE Transactions on Biomedical Engineering, 49(2), 152–159.
Jeleazcov, C., Fechner, J., & Schwilden, H. (2005). Electroencephalogram monitoring during anesthesia with propofol and alfentanil: The impact of second order spectral analysis. Anesthesia and Analgesia, 100(5), 1365–1369.
Kearse, L., Manberg, P., deBros, F., Chamoun, N., & Sinai, V. (1994). Bispectral analysis of the electroencephalogram during induction of anesthesia may predict hemodynamic responses to laryngoscopy and intubation. Electroencephalography and Clinical Neurophysiology, 90, 194–200.
Kearse, L., Saini, V., deBros, F., & Chamoun, N. (1991). Bispectral analysis may predict ansthetic depth during narcotic induction. Anesthesiology, 75, A175.
Kim, Y., & Powers, E. (1978). Digital bispectral analysis of self-excited fluctuation spectra. Physics of Fluids, 21(8), 1452–1453.
Kim, Y., & Powers, E. (1979). Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Transactions on Plasma Science, PS-7, 120–131.
Kleiner, B., Huber, P., & Dummermuth, G. (1969). Analysis of the interrelations between frequency bands of the EEG by means of the bispectrum. Electroencephalography and Clinical Neurophysiology, 27, 693–694.
Larsen, Y., Hanssen, A., & Pecseli, H. (2001). Analysis of non-stationary mode coupling by means of wavelet-bicoherence. In Proc. of the int. conf. acoust., speech, signal processing (Vol. 6, pp. 3581–3584).
Lien, C., Berman, M., Saini, V., et al. (1992). The accuracy of the EEG in predicting hemodynamic changes with incision during isoflurane anesthesia. Anesthesia and Analgesia, 74, S187.
Lopes da Silva, F. H. (1993). EEG analysis: Theory and practice. In E. Niedermeyer, & F. L. da Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (3rd ed., pp. 1097–1123). Baltimore: Williams and Wilkins.
Muthuswamy, J., & Roy, R. (1999). The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia. IEEE Transactions on Biomedical Engineering, 46(3), 291–299.
Muthuswamy, J., Sherman, D., & Thakor, N. (1999). Higher-order spectral analysis of burst patterns in EEG. IEEE Transactions on Biomedical Engineering, 46, 92–98.
Narasimhan, S., Ranjan, I., Plotkin, E., & Swamy, M. (1990). Muscle artifact cancellation from the EEG background activity by bispectrum. In Proc. of the lASTED intl. symp. (pp. 215–218).
Nikias, C., & Mendel, J. (1993). Signal processing with higher-order spectra. IEEE Signal Processing Magazine, 10(3), 10–37.
Nikias, C., & Petropulu, A. (1993). Higher-order spectra analysis-a nonlinear signal processing framework (1st ed.). Englewood Cliffs: PTR Prentice Hall.
Nikias, C., & Raghuveer, M. (1987). Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 75(7), 869–891.
Ning, T. (1988). Bispectral analysis of rat EEG during maturation. In Proc. of the IEEE eng. med. biol. soc. 10th annual intl. conf. (pp. 1218–1219).
Ning, T., & Bronzino, J. (1989). Bispectral analysis of the rat EEG during various vigilance states. IEEE Transactions on Biomedical Engineering, 36, 497–499.
Ning, T., & Bronzino, J. (1990). Autoregressive and bispectral analysis techniques: EEG applications. IEEE Engineering in Medicine and Biology, 9(1), 47–50.
Ning, T., & Bronzino, J. (1991). Cross-bispectra of the rat during REM sleep. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 13, 447–448.
Persson, L., Lennartson, R. K., Robinson, J. W. C., & McLaughlin, S. (2000). Quadratic phase coupling analysis of passive sonar data using biphase techniques. OCEANS 2000 MTS/IEEE Conference and Exhibition, 2, 1053–1057.
Qian, S., & Chen, D. (1996). Joint time-frequency analysis: Methods and applications. Englewood Cliffs: Prentice Hall.
Rao, T., & Gabr, M. (1984). An introduction to bispectra analysis and bilinear time series models. New York: Springer.
Saltzberg, B., Burton, W. D., Burch, N. R., Fletcher, J., & Michaels, R. (1986). Electrophysiological measures of regional neural interactive coupling: Linear and nonlinear dependence relationships among multiple channel electroencephalographic recordings. International Journal of Biomedical Computing, 18(2), 77–87.
Sandha, G., Singh, P., Oberoi, N., & Nagchoudhuri, D. (2004). Phase correlations in human EEG signal: A case study. In Proc. of the second IEEE international workshop on electronic design, test and applications (pp. 41–43).
Schack, B., Witte, H., Helbig, M., Schelenz, C., & Specht, M. (2001). Time-variant non-linear phase-coupling analysis of EEG burst patterns in sedated patients during electroencephalic burst suppression period. Clinical Neurophysiology, 112, 1388–1399.
Schanze, T. R. E. (1997). Phase correlation among rhythms present at different frequencies: Spectral methods, application to microelectrode recordings from visual cortex and functional implications. International Journal of Psychophysiology, 26, 171–189.
Schwab, K., Eiselt, M., Schelenz, C., & Witte, H. (2005). Time-variant parametric estimation of transient quadratic phase couplings during electroenphalographic burst activity. Methods of Information in Medicine, 44, 374–383.
Sebel, P., Bowles, S., Saini, V., & Chamoun, N. (1991). Accuracy of EEG in predicting movement at incision during isoflurane anesthesia. Anesthesiology, 75, A446.
Shils, J. (1995). The bispectrum of the human electroencephalogram. PhD thesis, University of Pennsylvania, Philadelphia.
Shils, J., Litt, M., Skolnick, B., & Stecker, M. (1996). Bispectral analysis of visual interactions in humans. Electroencephalography and Clinical Neurophysiology, 98, 113–125.
Sigl, J., & Chamoun, N. (1994). An introduction of bispectral analysis for the electroencephalogram. Journal of Clinical Monitoring, 10(6), 392–404.
Slepian, D. (1978). Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case. Bell System Technical Journal, 57(5), 1371–1429.
Steriade, M., & Timofeev, I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron, 37(4), 563–576.
Thomson, D. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055–1096.
Thomson, D. J. (1989). Multi-window bispectrum estimates. In Proc. IEEE workshop on higher-order spectral analysis (pp. 19–23). Colorado: Vail.
Thomson, D. J., Lanzerotti, L. J., Vernon, F. L., Lessard, M. R., & Smith, L. T. P. (2007). Solar modal structure of the engineering environment. Proceedings of the IEEE, 95, 1085–1132.
Varela, F., Lachaux, J., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239.
Vernon, J., Bowles, S., Sebel, P., & Chamoun, N. (1992). EEG bispectrum predicts movement at incision during isoflurane or propofol anesthesia. Anesthesiology, 77, A502.
Witte, H., Putsche, P., Eiselt, M., Hoffmann, K., Schack, B., Arnold, M., et al. (1997). Analysis of the interrelations between a low-frequency and a high-frequency signal component in human neonatal EEG uding quiet sleep. Neuroscience Letters, 236, 175–179.
Witte, H., Putsche, P., Schwab, K., Eiselt, M., Helbig, M., & Suesse, T. (2004). On the spatio-temporal organization of quadratic phase-couplings in ‘tracé alternant’ EEG pattern in full-term newborns. Clinical Neurophysiology, 115, 2308–2315.
Witte, H., & Schack, B. (2003). Quantification of phase coupling and information transfer between electoencephalographic EEG signals: Analysis strategies, models and simulations. Theory in Bioscience, 122(4), 361–381.
Witte, H., Schack, B., Helbig, M., Putsche, P., Schelenz, C., Schmidt, K., et al. (2000). Quantification of transient quadratic phase couplings within EEG burst patterns in sedated patients during electroencephalic burst-suppression period. Journal of Physiology (Paris), 94, 427–434.
Witte, H., Schelenz, C., Specht, M., Jäger, H., Putsche, P., Arnold, M., et al. (1999). Interrelations between E. E. G. frequency components in sedated intensive care patients during burst-suppression period. Neuroscience Letters, 260(1), 53–56.
Xu, Y., Haykin, S., & Racine, R. (1999). Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and Hermite functions. IEEE Transactions on Biomedical Engineering, 46(7), 861–866.
Acknowledgements
This study was supported by the Canada Research Chair Program and NSERC Grant RPGIN 250268. We thank Prof. Scott Makeig and Prof. Arnaud Delorme, both with the Swartz center at the University of California San Diego (UCSD), for EEG data and the Matlab toolbox EEGLAB. We thank Maja-Lisa Thomson for proofreading. We thank the reviewers, Prof. Jonathan Victor with Cornell University and Prof. Alain Destexhe with CNRS (France), for their comments to improve this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Rob Kass
This research was supported by the Canada Research Chair Program and NSERC Grant RPGIN 250268.
Rights and permissions
About this article
Cite this article
He, H., Thomson, D.J. Canonical bicoherence analysis of dynamic EEG data . J Comput Neurosci 29, 23–34 (2010). https://doi.org/10.1007/s10827-009-0177-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-009-0177-z