Skip to main content
Log in

Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alstrom, P., Christiansen, B., & Levinsen, M. T. (1988). Nonchaotic transition from quasiperiodicity to complete phase locking. Physical Review Letters, 61, 1679–1682.

    Article  PubMed  Google Scholar 

  • Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.

    CAS  PubMed  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J. M. (1980a). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them, Part I: Theory. Meccanica, 15, 9–20.

    Article  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J. M. (1980b). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them, Part II: Numerical application. Meccanica, 15, 21–30.

    Article  Google Scholar 

  • Brette, R. (2004). Dynamics of one-dimensional spiking neuron models. Journal of Mathematical Biology, 48, 38–56.

    Article  PubMed  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Mathematical Biology, 94, 3637–3642.

    Google Scholar 

  • Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological Cybernetics, 95, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biological Cybernetics, 95, 97–112.

    Article  CAS  PubMed  Google Scholar 

  • Cai, D., Rangan, A. V., & McLaughlin, D. W. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proceedings of National Academy of Sciences of the United States of America, 102, 5868–5873.

    Article  CAS  Google Scholar 

  • Carandini, M., Mechler, F., Leonard, C. S., & Movshon, J. A. (1996). Spike train encoding by regular-spiking cells of the visual cortex. Journal of Neurophysiology, 76, 3425–3441.

    CAS  PubMed  Google Scholar 

  • Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and information transmission. Journal of Computational Neuroscience, 23, 301–311.

    Article  PubMed  Google Scholar 

  • Chacron, M. J., Longtin, A., & Maler, L. (2001a). Negative interspike interval correlations increase the neuronal capacity for encoding time dependent stimuli. Journal of Neuroscience, 21, 5328–5343.

    CAS  PubMed  Google Scholar 

  • Chacron, M. J., Longtin, A., & Maler, L. (2001b). Simple models of bursting and non-bursting P-type electroreceptors. Neurocomputing, 38, 129–139.

    Article  Google Scholar 

  • Chacron, M. J., Longtin, A., & Pakdaman, K. (2004). Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue. Physica D, 192, 138–160.

    Article  Google Scholar 

  • Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Physical Review Letters, 85, 1576–1579.

    Article  CAS  PubMed  Google Scholar 

  • Chacron, M. J., Pakdaman, K., & Longtin, A. (2003). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15, 253–276.

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience. Massachusetts: MIT.

    Google Scholar 

  • de Souza, S. L. T., & Caldas, I. L. (2001). Basins of attraction and transient chaos in a gear-rattling model. Journal of Vibration and Control, 7, 849–862.

    Article  Google Scholar 

  • de Souza, S. L. T., & Caldas, I. L. (2004). Calculation of Lyapunov exponents in systems with impacts. Chaos, Solitons & Fractals, 19, 569–579.

    Article  Google Scholar 

  • Eckmann, J. P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617–656.

    Article  CAS  Google Scholar 

  • Farmer, J. D., Ott, E., & Yorke, J. A. (1983). The dimension of chaotic attractors. Physica D, 7, 153–180.

    Article  Google Scholar 

  • Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.

    CAS  PubMed  Google Scholar 

  • Frederickson, P., Kaplan, J. L., Yorke, E. D., & Yorke, J. A. (1983). The Lyapunov dimension of strange attractors. Journal of Differential Equations, 49, 185–207.

    Article  Google Scholar 

  • Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32–47.

    Article  CAS  Google Scholar 

  • Geisler, C., Brunel, N., & Wang, X. J. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of Neurophysiology, 94, 4344–4361.

    Article  PubMed  Google Scholar 

  • Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.

    Google Scholar 

  • Han, R. P. S., Luo, A. C. J., & Deng, W. (1995). Chaotic motion of a horizontal impact pair. Journal of Sound & Vibration, 181, 231–250.

    Article  Google Scholar 

  • Harsch, A., & Robinson, H. P. (2000). Postsynaptic variability of firing in rat cortical neurons: The roles of input synchronization and synaptic NMDA receptor conductance. Journal of Neuroscience, 20, 6181–6192.

    CAS  PubMed  Google Scholar 

  • Hegger, R., Kantz, H., & Schreiber, T. (1999). Practical implementation of nonlinear time series methods: The TISEAN package. Chaos, 9, 413–435.

    Article  PubMed  Google Scholar 

  • Hinrichs, N., Oestreich, M., & Popp, K. (1997). Dynamics of oscillators with impact and friction. Chaos, Solitons & Fractals, 8, 535–558.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    CAS  PubMed  Google Scholar 

  • Horn, D., & Opher, I. (2000). Complex dynamics of neuronal thresholds. Neurocomputing, 32, 161–166.

    Article  Google Scholar 

  • Horn, D., & Usher, M. (1989). Neural networks with dynamical thresholds. Physical Review A, 40, 1036–1044.

    Article  PubMed  Google Scholar 

  • Kantz, H. (1994). A robust method to estimate the maximal Lyapunov exponent of a time series. Physics letters A, 185, 77–87.

    Article  Google Scholar 

  • Kaplan, J. L., & Yorke, J. A. (1979). Funtional differential equations and approximations of fixed points. Berlin: Springer.

    Google Scholar 

  • Lichtenberg, A. L., & Lieberman, M. A. (1992). Regular and chaotic dynamics. New York: Springer.

    Google Scholar 

  • Lindner, B., & Longtin, A. (2005). Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron. Journal of Theoretical Biology, 232, 505–521.

    Article  PubMed  Google Scholar 

  • Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized integrate-and fire model neuron. Journal of Computational Neuroscience, 10, 25–45.

    Article  CAS  PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, D. W., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4C alpha. Proceedings of National Academy of Sciences of the United States of America, 97, 8087–8092.

    Article  CAS  Google Scholar 

  • Mueller, P. C. (1995). Calculation of Lyapunov exponents for dynamics systems with discontinuities. Chaos, Solitons & Fractals, 5, 1671–1681.

    Article  Google Scholar 

  • Nowak, L. G., Azouz, R., Sanchez-vives, M. V., Gray, C. M., & McCormick, D. A. (2003). Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology, 89, 1541–1566.

    Article  PubMed  Google Scholar 

  • Oseledec, V. I. (1968). A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Transactions of the Moscow Mathematical Society, 19, 197–221.

    Google Scholar 

  • Ott, E. (1993). Chaos in dynamical systems. New York: Cambridge University Press.

    Google Scholar 

  • Parker, T. S., & Chua, L. O. (1989). Practical numerical algorithms for chaotic systems. New York: Springer.

    Google Scholar 

  • Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–824.

    Article  PubMed  Google Scholar 

  • Rabinovich, M. I., Varona, P., Selverston, A. I., & Abarbanel, H. D. I. (2006). Dynamical principles in neuroscience. Reviews of Modern Physics, 78, 1213–1265.

    Article  Google Scholar 

  • Ramasubramanian, K., & Seiram, M. S. (2000). A comparative study of computation of Lyapunov spectra with different algorithms. Physica D, 139, 72–86.

    Article  CAS  Google Scholar 

  • Rangan, A. V., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22, 81–100.

    Article  PubMed  Google Scholar 

  • Rangan, A. V., Cai, D., & McLaughlin, D. W. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of National Academy of Sciences of the United States of America, 102, 18793–18800.

    Article  CAS  Google Scholar 

  • Rauch, A., Camera, G. L., Luscher, H., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. Journal of Neurophysiology, 90, 15980–1612.

    Article  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation and information coding. Journal of Neuroscience, 18, 3870–3896.

    CAS  PubMed  Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13, 334–350.

    CAS  PubMed  Google Scholar 

  • Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.

    CAS  PubMed  Google Scholar 

  • Stefanski, A. (2000). Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons & Fractals, 11, 2443–2451.

    Article  Google Scholar 

  • Stefanski, A., & Kapitaniak, T. (2000). Using chaos synchronization to estimate the largest Lyapunov exponent of nonsmooth systems. Discrete Dynamics in Nature and Society, 4, 207–215.

    Article  Google Scholar 

  • Stefanski, A., & Kapitaniak, T. (2003). Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization. Chaos, Solitons & Fractals, 15, 233–244.

    Article  Google Scholar 

  • Tao, L., Shelley, M., McLaughlin, D. W., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of National Academy of Sciences of the United States of America, 101, 366–371.

    Article  CAS  Google Scholar 

  • Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23, 775–785.

    Article  CAS  PubMed  Google Scholar 

  • Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.

    CAS  PubMed  Google Scholar 

  • Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.

    CAS  PubMed  Google Scholar 

  • Wark, B., Lundstrom, B. N., & Fairhall, A. (2007). Sensory adaptation. Current opinion in Neurobiology, 17, 423–429.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining lyapunov exponents from a time series. Physica D, 16, 285–317.

    Article  Google Scholar 

  • Zhang, L., & McBain, C. J. (1995). Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. Journal of Physiology, 488, 661–672.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by NSF grants and a grant from the Swartz foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Zhou.

Additional information

Action Editor: David Terman

Appendix: Proof of no degeneracy in the augmented dynamics

Appendix: Proof of no degeneracy in the augmented dynamics

Here, we demonstrate that the introduction of the dynamics of the refractory residence time indeed extends the original standard algorithm of computing LEs and does not encounter the degeneracy problem as discussed before. In other words, we can show that evolving from an initial ball with radius ε centered at the reference trajectory to any time T, one can always obtain a linear transformed ellipsoid without degeneracy.

Suppose at time T (n) =  T, the system is in the network subthreshold period and the perturbation vector \(\delta{\boldsymbol{x}}^{(n)}\) is given as \((\delta{\boldsymbol{x}}^{(n)}_1, \delta{\boldsymbol{x}}^{(n)}_2,\cdots,\delta{\boldsymbol{x}}^{(n)}_N)\), where \(\delta{\boldsymbol{x}}^{(n)}_i\!=\!(\delta{V}_i^{(n)},\delta{G}_i^{(n)})\). Then, at the next time T (n + 1) = (n + 1)ΔT, the system is in the network refractory period with the perturbation vector \(\delta{\boldsymbol{x}}^{(n+1)}\!=\) \((\delta{\boldsymbol{x}}^{(n+1)}_1, \delta{\boldsymbol{x}}^{(n+1)}_2,\cdots,\delta{\boldsymbol{x}}^{(n+1)}_N)\), where \(\delta{\boldsymbol{x}}^{(n+1)}_i \!=\! (\delta{\tau}_i^{(n+1)},\) \( \delta{G}_i^{(n+1)})\) if \(T^{(n+1)}\in \bigcup\limits_k(T_{i,k},T_{i,k}+\tau_{\rm{ref}})\) and \(\delta{\boldsymbol{x}}^{(n+1)}_i = (\delta{V}_i^{(n+1)},\delta{G}_i^{(n+1)})\) if \(T^{(n+1)}\in\bigcup\limits_k(T_{i,k}+\tau_{\rm{ref}},\,T_{i,k+1})\). We show that there is no degeneracy problem when using GSR at time T (n + 1) to obtain the local LEs of the system. In other words, the evolution matrix \(\mathbb{A}^{(n,n+1)}\) over the interval [T (n),T (n + 1)] linking the perturbation vector from \(\delta{\boldsymbol{x}}^{(n)}\) to \(\delta{\boldsymbol{x}}^{(n+1)}\) is nondegenerate (nonsingular). We first divide the interval [T (n),T (n + 1)] into the combination of several subintervals as \([T^{(n)},T^{(n+1)}]\!=\!\bigcup\limits_{i=0}^{M-1}\bar{E}_{i}\), where \(\bar{E}_i\!=\![T^{(n_i)},\) \(T^{(n_{i+1})}]\) with n 0 = n, n M  = n + 1, and \(T^{(n)}<T^{(n_i)}<T^{(n+1)}\,(i=1,2,\cdots,M-1)\) are chosen from either the set of neurons’ spike time \(\bigcup\limits_j\bigcup\limits_k\{T_{j,k}\}\) or the set of neurons’ awakening time \(\bigcup\limits_j\bigcup\limits_k\{T_{j,k}+\tau_{\rm{ref}}\}\). Notice that the dynamics of the perturbation vector over each subinterval \(E_i=(T^{(n_i)},T^{(n_{i+1})})\) is smooth, we will show that both the evolution matrix \(\mathbb{B}^{(n_i,n_{i+1})}\) over each subinterval linking the perturbation vector from \(\delta{\boldsymbol{x}}^{(n_i^{+})}\) to \(\delta{\boldsymbol{x}}^{(n_{i+1}^{-})}\) and the transition matrix \(\mathbb{R}^{(n_i}\) immediately before and after each \(T^{(n_i)}\) linking the perturbation vector from \(\delta{\boldsymbol{x}}^{(n_i^{-})}\) to \(\delta{\boldsymbol{x}}^{(n_i^{+})}\) are nondegenerate, where \(\delta{\boldsymbol{x}}^{(n_i^{+})}\) and \(\delta{\boldsymbol{x}}^{(n_{i+1}^{-})}\) represent one-sided limits of the perturbation vector \(\delta{\boldsymbol{x}}\) obtained as \(\lim\limits_{{T-T^{(n_i)}\rightarrow{0^{+}}}}\delta{\boldsymbol{x}}(T)\) and \(\lim\limits_{{T-T^{(n_{i+1})}\rightarrow{0^{-}}}}\delta{\boldsymbol{x}}(T)\). For any n i (i = 1,2, ⋯ ,M − 1), we first consider the transition matrix \(\mathbb{R}^{(n_i}\) immediately before and after \(T^{(n_i)}\). (i) If \(T^{(n_i)}=T_{j,k}\) (the kth spike time of the jth neuron), the transition matrix \(\mathbb{R}^{(n_i}\) can be obtained as

$$ \label{TranMatrix1} \mathbb{R}^{(n_i)}(p,q) = \begin{cases} \qquad{1}& \text{if $p=q\neq{2j-1}$,}\\ \frac{1}{\dot{V}_j(T_{j,k}^{-})}& \text{if $p=q=2j-1$,}\\ -\frac{S}{\sigma{\dot{V}_j(T_{j,k}^{-})}}& \text{if $q=2j-1$ and $p$ is even}, \\ & \quad\text{but $p\neq{2j}$,}\\ \qquad{0}& \text{otherwise,} \end{cases} $$
(20)

where \(\mathbb{R}^{(n_i}\) represents the element of the matrix with the position at the pth row and the qth column. The first line on the RHS of Eq. (20) describes the linear transition coefficient of the lth neuron’s voltage component in the perturbation vector linking \(\delta{V}_l^{(n_i^{-})}\) and \(\delta{V}_l^{(n_i^{+})}\) with the label l ≠ j. The second line on the RHS of Eq. (20) describes the linear transition coefficient of the jth neuron’s voltage component in the perturbation vector linking \(\delta{V}_j^{(n_i^{-})}\) and \(\delta{\tau}_j^{(n_i^{+})}\) as in Eq. (13). The third line combined with the first line on the RHS of Eq. (20) describes the linear transition coefficients of the lth neuron’s conductance component in the perturbation vector linking \(\delta{G}_l^{(n_i^{-})}\) and \(\delta{G}_l^{(n_i^{+})}\) with the label l ≠ j as in Eq. (10) (we only consider the effects of the jth neuron’s spike to the change of other neurons’ conductance, not to itself). (ii) If \(T^{(n_i)}=T_{j,k}+\tau_{\rm{ref}}\) (the kth awakening time of the jth neuron), the transition matrix \(\mathbb{R}^{(n_i}\) can be obtained as

$$ \label{TranMatrix2} \mathbb{R}^{(n_i)}(p,q) = \begin{cases} \qquad{1}& \text{if $p=q\neq{2j-1}$,}\\ \dot{V}_j\bigl[(T_{j,k}+\tau_{\rm{ref}})^{+}\bigr] & \text{if $p=q=2j-1$}, \\ \qquad{0}& \text{otherwise,} \end{cases} $$
(21)

where the first line on the RHS of Eq. (21) describes the linear transition coefficient of the lth neuron’s voltage component in the perturbation vector linking \(\delta{V}_l^{(n_i^{-})}\) and \(\delta{V}_l^{(n_i^{+})}\) with the label l ≠ j, and also the linear transition coefficient of the lth neuron’s conductance component in the perturbation vector linking \(\delta{G}_l^{(n_i^{-})}\) and \(\delta{G}_l^{(n_i^{+})}\) with the label l = 1,2, ⋯ ,N. The second line on the RHS of Eq. (21) describes the linear transition coefficient of the jth neuron’s voltage component in the perturbation vector linking \(\delta{\tau}_j^{(n_i^{-})}\) and \(\delta{V}_j^{(n_i^{+})}\) as in Eq. (14). We can see that the transition matrix is nondegenerate in both cases (i) and (ii). Next, we consider the evolution matrix \(\mathbb{B}^{(n_i,n_{i+1})}\) over each subinterval E i . For any n i (i = 0,1, ⋯ ,M − 1), we define two sets of neuron index for a given E i as follows: the first set I is given as \(I=\{j|1\leq{j}\leq{N},\,E_i\subseteq{\Gamma_j}\}\), where Γ j is the set of the jth neuron’s refractory period as \(\Gamma_j=\bigcup\limits_k(T_{j,k},T_{j,k}+\tau_{\rm{ref}})\). The second set J is given as \(J=\{j|1\leq{j}\leq{N},\,E_i\subseteq{\Lambda_j}\}\) , where Λ j is the set of the jth neuron’s subthreshold period as \(\Lambda_j=\bigcup\limits_k(T_{j,k}+\tau_{\rm{ref}},T_{j,k+1})\). The evolution matrix \(\mathbb{B}^{(n_i,n_{i+1})}\) can be obtained as \(\mathbb{B}^{(n_i,n_{i+1})}(p,q) =\)

$$ \label{EvolMatrix} \begin{cases} &\exp\Bigl(-\int_{E_{i}}\bigl[G^{L}+G_l(s)\bigr]\,ds\Bigr), \\ &\qquad\qquad \text{if $p=q=2l-1$, where $l\in{J}$;}\\ &-\int_{E_i}{\exp\bigl[-\Psi(s)\bigr] \bigl[V_l(s)-V^{E}\bigr]\,ds}, \\ &\qquad\qquad \text{if $p+1=q=2l$, where $l\in{J}$;}\\ &\exp\bigl(-\frac{T^{(n_{i+1})}-T^{(n_{i})}}{\sigma}\bigr), \\ &\qquad\qquad \text{if $p=q=2l$, where $1\leq{l}\leq{N}$;}\\ &{1}, \qquad\quad \text{if $p=q=2l-1$, where $l\in{I}$;}\\ &{0}, \qquad\quad \text{otherwise,} \end{cases} $$
(22)

where

$$ \Psi(s)= \int_{s}^{T^{(n_{i+1})}}\bigl[G^{L}+G_l(w)\bigr]\,dw+\frac{s-T^{(n_i)}}{\sigma}. $$

The first line and the second line on the RHS of Eq. (22) describe the linear transition coefficients of the lth neuron’s voltage component in the perturbation vector linking \(\delta{V}_l^{(n_i^{-})}\), \(\delta{G}_l^{(n_i^{-})}\) and \(\delta{V}_l^{(n_i^{+})}\) as obtained by linearization of Eq. (5) with the label l ∈ J (i.e., the neuron under its subthreshold dynamics). The third line on the RHS of Eq. (22) describes the linear transition coefficient of the lth neuron’s conductance component in the perturbation vector linking \(\delta{G}_l^{(n_i^{-})}\) and \(\delta{G}_l^{(n_i^{+})}\) with the label l = 1,2, ⋯ ,N. The fourth line on the RHS of Eq. (22) describes the linear transition coefficient of the lth neuron’s voltage component in the perturbation vector linking \(\delta{\tau}_l^{(n_i^{-})}\) and \(\delta{\tau}_l^{(n_i^{+})}\) with the label l ∈ I (i.e., the neuron under its refractory dynamics). We can see that the evolution matrix \(\mathbb{B}^{(n_i,n_{i+1})}\) is also nondegenerate. The evolution matrix \(\mathbb{A}^{(n)}\) over the whole interval [T (n),T (n + 1)] should be the product of both the evolution matrix over each subinterval \((T^{(n_i)},T^{(n_{i+1})})\) and the transition matrix immediately before and after each \(T^{(n_i)}\) as \(\mathbb{A}^{(n)}=\mathbb{B}^{(n_0,n_1)}\mathbb{R}^{(n_1)}\times \mathbb{B}^{(n_1,n_2)}\mathbb{R}^{(n_2)}\cdots\mathbb{R}^{(n_{M-1})} \mathbb{B}^{(n_{M-1},n_M)}\). Therefore, the evolution matrix \(\mathbb{A}^{(n)}\) is nondegenerate and we will not encounter the degeneracy problem when computing the local LEs using GSR. This is because we can always generate a complete set of corresponding orthogonal vectors at time T (n + 1) even though T (n + 1) is in a network refractory period. As a conclusion, both the theoretical definition and the numerical algorithm of LEs for smooth dynamical systems can be extended to the non-smooth dynamical systems of I&F networks with refractory-induced degeneracy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Sun, Y., Rangan, A.V. et al. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type. J Comput Neurosci 28, 229–245 (2010). https://doi.org/10.1007/s10827-009-0201-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0201-3

Keywords

Navigation