Skip to main content
Log in

Spatial and temporal correlations of spike trains in frog retinal ganglion cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

For a neuron, firing activity can be in synchrony with that of others, which results in spatial correlation; on the other hand, spike events within each individual spike train may also correlate with each other, which results in temporal correlation. In order to investigate the relationship between these two phenomena, population neurons’ activities of frog retinal ganglion cells in response to binary pseudo-random checker-board flickering were recorded via a multi-electrode recording system. The spatial correlation index (SCI) and temporal correlation index (TCI) were calculated for the investigated neurons. Statistical results showed that, for a single neuron, the SCI and TCI values were highly related—a neuron with a high SCI value generally had a high TCI value, and these two indices were both associated with burst activities in spike train of the investigated neuron. These results may suggest that spatial and temporal correlations of single neuron’s spiking activities could be mutually modulated; and that burst activities could play a role in the modulation. We also applied models to test the contribution of spatial and temporal correlations for visual information processing. We show that a model considering spatial and temporal correlations could predict spikes more accurately than a model does not include any correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ISI:

inter-spike-intervals

RGC:

retinal ganglion cell

MEA:

multi-electrode array

SCI:

spatial correlation index

STA:

Spike-triggered averaged

TCI:

temporal correlation index

LGN:

lateral geniculate nucleus

References

  • Bhattacharya, J., Edwards, J., Mamelak, A. N., & Schuman, E. M. (2005). Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans. Neuroscience, 131(2), 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, S. A., & Völgyi, B. (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nature Reviews. Neuroscience, 10(7), 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–540.

    Article  PubMed  CAS  Google Scholar 

  • Buonomano, D. V., & Maass, W. (2009). State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews. Neuroscience, 10(2), 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Cai, C. F., Zhang, Y. Y., Liu, X., Liang, P. J., & Zhang, P. M. (2008). Detecting determinism in firing activities of retinal ganglion cells during response to complex stimuli. Chinese Physics Letters, 25(5), 1595–1598.

    Article  Google Scholar 

  • DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.

    PubMed  CAS  Google Scholar 

  • Devries, S. H., & Baylor, D. A. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. Journal of Neurophysiology, 78(4), 2048–2060.

    PubMed  CAS  Google Scholar 

  • Field, G. D., & Chichilnisky, E. J. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience, 30, 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Ishikane, H., Gangi, M., Honda, S., & Tachibana, M. (2005). Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nature Neuroscience, 8(8), 1087–1095.

    Article  PubMed  CAS  Google Scholar 

  • Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010a). Influence of GABAergic inhibition on concerted activity between the ganglion cells. NeuroReport, 21(12), 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010b). Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cognitive Neurodynamics, 4, 179–188.

    Article  Google Scholar 

  • Koch, K., McLean, J., Berry, M., Sterling, P., Balasubramanian, V., & Freed, M. A. (2004). Efficiency of information transmission by retinal ganglion cells. Current Biology, 14(17), 1523–1530.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K., McLean, J., Segev, R., Freed, M. A., Berry, M. J., Balasubramanian, V., et al. (2006). How much the eye tells the brain. Current Biology, 16(14), 1428–1434.

    Article  PubMed  CAS  Google Scholar 

  • Lesica, N., & Stanley, G. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. The Journal of Neuroscience, 24(47), 10731.

    Article  PubMed  CAS  Google Scholar 

  • Lettvin, J., Maturana, H., McCulloch, W., & Pitts, W. (1959). What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11), 1940–1951.

    Article  Google Scholar 

  • Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20(1), 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Zhou, Y., Gong, H. Q., & Liang, P. J. (2007). Contribution of the GABAergic pathway (s) to the correlated activities of chicken retinal ganglion cells. Brain Research, 1177, 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Lowen, S. B., & Teich, M. C. (1992). Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. Journal of the Acoustical Society of America, 92(2I), 803–806.

    Article  PubMed  CAS  Google Scholar 

  • Meister, M., Pine, J., & Baylor, D. A. (1994). Multi-neuronal signals from the retina: acquisition and analysis. Journal of Neuroscience Methods, 51(1), 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Meister, M., Lagnado, L., & Baylor, D. A. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207.

    Article  PubMed  CAS  Google Scholar 

  • Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–733.

    Article  PubMed  CAS  Google Scholar 

  • Oram, M., Wiener, M., Lestienne, R., & Richmond, B. (1999). Stochastic nature of precisely timed spike patterns in visual system neuronal responses. Journal of Neurophysiology, 81(6), 3021–3033.

    PubMed  CAS  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Reid, R., Victor, J., & Shapley, R. (1997). The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Visual Neuroscience, 14(06), 1015–1027.

    Article  PubMed  CAS  Google Scholar 

  • Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. The Journal of Neuroscience, 20(14), 5392.

    PubMed  CAS  Google Scholar 

  • Schneidman, E., Berry, M. J., II, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37(3), 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Segev, R., Goodhouse, J., Puchalla, J., & Berry Ii, M. J. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7(10), 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  • Shlens, J., Rieke, F., & Chichilnisky, E. J. (2008). Synchronized firing in the retina. Current Opinion in Neurobiology, 18(4), 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Snider, R., Kabara, J., Roig, B., & Bonds, A. (1998). Burst firing and modulation of functional connectivity in cat striate cortex. Journal of Neurophysiology, 80(2), 730–744.

    PubMed  CAS  Google Scholar 

  • Strong, S., Koberle, R., van Steveninck, R., & Bialek, W. (1998). Entropy and information in neural spike trains. Am Phys Soc, 80, 197–200.

    CAS  Google Scholar 

  • Teich, M. C., Turcott, R. G., & Siegel, R. M. (1996). Temporal correlation in cat striate-cortex neural spike trains. IEEE Engineering in Medicine and Biology Magazine, 15(5), 79–87.

    Article  Google Scholar 

  • Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T., & Kaplan, E. (1997). Fractal character of the neural spike train in the visual system of the cat. Journal of the Optical Society of America A, 14(3), 529–546.

    Article  CAS  Google Scholar 

  • Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395(6700), 384–387.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. M., Wu, J. Y., Zhou, Y., Liang, P. J., & Yuan, J. (2004). Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. Journal of Neuroscience Methods, 135(1–2), 55–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Xin-Wei Gong for helpful discussions. This work was supported by the grants from the State Key Basic Research and Development Plan (No.2005CB724301) and National Foundation of Natural Science of China (No.30670519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Ji Liang.

Additional information

Action Editor: Simon R Schultz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, WZ., Jing, W., Li, H. et al. Spatial and temporal correlations of spike trains in frog retinal ganglion cells. J Comput Neurosci 30, 543–553 (2011). https://doi.org/10.1007/s10827-010-0277-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0277-9

Keywords

Navigation