Skip to main content

Advertisement

Log in

Spiking neurons that keep the rhythm

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Detecting the temporal relationship among events in the environment is a fundamental goal of the brain. Following pulses of rhythmic stimuli, neurons of the retina and cortex produce activity that closely approximates the timing of an omitted pulse. This omitted stimulus response (OSR) is generally interpreted as a transient response to rhythmic input and is thought to form a basis of short-term perceptual memories. Despite its ubiquity across species and experimental protocols, the mechanisms underlying OSRs remain poorly understood. In particular, the highly transient nature of OSRs, typically limited to a single cycle after stimulation, cannot be explained by a simple mechanism that would remain locked to the frequency of stimulation. Here, we describe a set of realistic simulations that capture OSRs over a range of stimulation frequencies matching experimental work. The model does not require an explicit mechanism for learning temporal sequences. Instead, it relies on spike timing-dependent plasticity (STDP), a form of synaptic modification that is sensitive to the timing of pre- and post-synaptic action potentials. In the model, the transient nature of OSRs is attributed to the heterogeneous nature of neural properties and connections, creating intricate forms of activity that are continuously changing over time. Combined with STDP, neural heterogeneity enabled OSRs to complex rhythmic patterns as well as OSRs following a delay period. These results link the response of neurons to rhythmic patterns with the capacity of heterogeneous circuits to produce transient and highly flexible forms of neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbott, L. F., & Blum, K. I. (1996). Functional significance of long-term potentiation for sequence learning and prediction. Cerebral Cortex, 6(3), 406–416.

    Article  PubMed  CAS  Google Scholar 

  • Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature Neuroscience, 3(Suppl), 1178–1183.

    Article  PubMed  CAS  Google Scholar 

  • Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bi, G., & Poo, M. (1999). Distributed synaptic modification in neural networks induced by patterned stimulation. Nature, 401(6755), 792–796.

    Article  PubMed  CAS  Google Scholar 

  • Bracci, E., Vreugdenhil, M., Hack, S. P., & Jefferys, J. G. (1999). On the synchronizing mechanisms of tetanically induced hippocampal oscillations. The Journal of Neuroscience, 19(18), 8104–8113.

    PubMed  CAS  Google Scholar 

  • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.

    Article  PubMed  CAS  Google Scholar 

  • Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11(7), 1621–1671.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G., Geisler, C., Henze, D. A., & Wang, X. J. (2004). Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends in Neurosciences, 27(4), 186–193.

    Article  PubMed  CAS  Google Scholar 

  • Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995). Stochastic resonance without tuning. Nature, 376(6537), 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Demiralp, T., & Basar, E. (1992). Theta rhythmicities following expected visual and auditory targets. International Journal of Psychophysiology, 13(2), 147–160.

    Article  PubMed  CAS  Google Scholar 

  • Demiralp, T., Basar-Eroglu, C., Rahn, E., & Basar, E. (1994). Event-related theta rhythms in cat hippocampus and prefrontal cortex during an omitted stimulus paradigm. International Journal of Psychophysiology, 18(1), 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314(5796), 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Eytan, D., & Marom, S. (2006). Dynamics and effective topology underlying synchronization in networks of cortical neurons. The Journal of Neuroscience, 26(33), 8465–8476.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, D. E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27(1), 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683.

    Article  PubMed  CAS  Google Scholar 

  • Freund, J. A., Schimansky-Geier, L., & Hanggi, P. (2003). Frequency and phase synchronization in stochastic systems. Chaos, 13, 225–238.

    Article  PubMed  Google Scholar 

  • Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25(4), 355–373.

    Article  PubMed  CAS  Google Scholar 

  • Fusi, S., & Abbott, L. F. (2007). Limits on the memory storage capacity of bounded synapses. Nature Neuroscience, 10, 485–493.

    PubMed  CAS  Google Scholar 

  • Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18970–18975.

    Article  PubMed  CAS  Google Scholar 

  • Gerstner, W., & Kistler, W. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gerstner, W., Ritz, R., & van Hemmen, J. L. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biological Cybernetics, 69(5–6), 503–515.

    PubMed  CAS  Google Scholar 

  • Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595), 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Han, F., Caporale, N., & Dan, Y. (2008). Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60(2), 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.

    Google Scholar 

  • Herz, A., Sulzer, B., Kuhn, R., & van Hemmen, J. L. (1989). Hebbian learning reconsidered: representation of static and dynamic objects in associative neural nets. Biological Cybernetics, 60(6), 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Heynen, A. J., & Bear, M. F. (2001). Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. The Journal of Neuroscience, 21(24), 9801–9813.

    PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Computation, 18(2), 245–282.

    Article  PubMed  Google Scholar 

  • Jaaskelainen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levanen, S., et al. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6809–6814.

    Article  PubMed  Google Scholar 

  • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 304(5667), 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Kempter, R., Gerstner, W., & van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Physical Review E, 59(4), 4498–4514.

    Article  CAS  Google Scholar 

  • Kempter, R., Gerstner, W., & van Hemmen, J. L. (2001). Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Computation, 13(12), 2709–2741.

    Article  PubMed  CAS  Google Scholar 

  • Koene, R. A., & Hasselmo, M. E. (2008). Reversed and forward buffering of behavioral spike sequences enables retrospective and prospective retrieval in hippocampal regions CA3 and CA1. Neural Networks, 21(2–3), 276–288.

    Article  PubMed  Google Scholar 

  • Levy, N., Horn, D., Meilijson, I., & Ruppin, E. (2001). Distributed synchrony in a cell assembly of spiking neurons. Neural Networks, 14(6–7), 815–824.

    Article  PubMed  CAS  Google Scholar 

  • Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531–2560.

    Article  PubMed  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Masland, R. H. (2001). Neuronal diversity in the retina. Current Opinion in Neurobiology, 11(4), 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, N., & Kori, H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of Computational Neuroscience, 22, 327–345.

    Article  PubMed  Google Scholar 

  • Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88(5), 395–408.

    Article  PubMed  Google Scholar 

  • Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543–1546.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural Computation, 19(6), 1437–1467.

    Article  PubMed  Google Scholar 

  • Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459–478.

    Article  PubMed  Google Scholar 

  • O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. (2005). Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9679–9684.

    Article  PubMed  Google Scholar 

  • Petersen, C. C., Malenka, R. C., Nicoll, R. A., & Hopfield, J. J. (1998). All-or-none potentiation at CA3-CA1 synapses. Proceedings of the National Academy of Sciences of the United States of America, 95, 4732–4737.

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich, M. I., & Abarbanel, H. D. (1998). The role of chaos in neural systems. Neuroscience, 87(1), 5–14.

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich, M., Huerta, R., & Laurent, G. (2008). Neuroscience. Transient dynamics for neural processing. Science, 321(5885), 48–50.

    Article  PubMed  CAS  Google Scholar 

  • Rainer, G., & Miller, E. K. (2002). Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. The European Journal of Neuroscience, 15(7), 1244–1254.

    Article  PubMed  Google Scholar 

  • Ramon, F., & Gronenberg, W. (2005). Electrical potentials indicate stimulus expectancy in the brains of ants and bees. Cellular and Molecular Neurobiology, 25(2), 313–327.

    Article  PubMed  Google Scholar 

  • Saigusa, T., Tero, A., Nakagaki, T., & Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Review Letters, 100, 018101.

    Article  PubMed  Google Scholar 

  • Schwartz, G., Harris, R., Shrom, D., & Berry, M. J., 2nd. (2007). Detection and prediction of periodic patterns by the retina. Nature Neuroscience, 10(5), 552–554.

    Article  PubMed  CAS  Google Scholar 

  • Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146(3), 1082–1108.

    Article  PubMed  CAS  Google Scholar 

  • Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., & Tsodyks, M. (2004). Dynamics of population rate codes in ensembles of neocortical neurons. Journal of Neurophysiology, 91(2), 704–709.

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32, 1149–1164.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Sjostrom, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.

    Article  PubMed  Google Scholar 

  • Sumbre, G., Muto, A., Baier, H., & Poo, M. M. (2008). Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature, 456(7218), 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Suri, R. E., & Sejnowski, T. J. (2002). Spike propagation synchronized by temporally asymmetric Hebbian learning. Biological Cybernetics, 87(5–6), 440–445.

    Article  PubMed  Google Scholar 

  • Swadlow, H. A. (1985). Physiological properties of individual cerebral axons studied in vivo for as long as one year. Journal of Neurophysiology, 54(5), 1346–1362.

    Google Scholar 

  • Thivierge, J. P., & Cisek, P. (2008). Nonperiodic synchronization in heterogeneous networks of spiking neurons. The Journal of Neuroscience, 28(32), 7968–7978.

    Article  PubMed  CAS  Google Scholar 

  • Thivierge, J. P., Rivest, F., & Monchi, O. (2007). Spiking neurons, dopamine, and plasticity: timing is everything, but concentration also matters. Synapse, 61(6), 375–390.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Frontiers in Neuroscience, 1, 19–42.

    Article  PubMed  CAS  Google Scholar 

  • van Rossum, M. C., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. The Journal of Neuroscience, 22(5), 1956–1966.

    PubMed  Google Scholar 

  • van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.

    Article  PubMed  Google Scholar 

  • Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. The Journal of Neuroscience, 25(46), 10786–10795.

    Article  PubMed  CAS  Google Scholar 

  • Vogels, T. P., Rajan, K., & Abbott, L. F. (2005). Neural network dynamics. Annual Review of Neuroscience, 28, 357–376.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542.

    Article  PubMed  CAS  Google Scholar 

  • Yao, H., Shi, L., Han, F., Gao, H., & Dan, Y. (2007). Rapid learning in cortical coding of visual scenes. Nature Neuroscience, 10(6), 772–778.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., & Poo, M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395(6697), 37–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JPT is supported by postdoctoral fellowships from the Natural Sciences and Engineering Research Council of Canada and the Fonds de Recherche en Santé du Québec. PC is supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Fonds de Recherche en Santé du Québec (infrastructure grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Thivierge.

Additional information

Action Editor: X.-J. Wang

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(RAR 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thivierge, JP., Cisek, P. Spiking neurons that keep the rhythm. J Comput Neurosci 30, 589–605 (2011). https://doi.org/10.1007/s10827-010-0280-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0280-1

Keywords