Abstract
We present an analysis of the Wagon Wheel Illusions—classic psychophysical phenomena—in the context of a neural network model of orientation selectivity in the visual system. We find that both the continuous Wagon Wheel Illusion (c-WWI) and the standard, stroboscopic Wagon Wheel Illusion (WWI) can be explained by a recurrent model in which the cortex provides both excitatory and inhibitory feedback to a weakly tuned input from the lateral geniculate nucleus. Comparison of data from recent psychophysics experiments with theoretical predictions derived from the network dynamics leads to excellent agreement. Conversely, this agreement confirms the validity of the model and highlights the fact that the Wagon Wheel Illusion can serve as a useful probe of the human striate cortex. We find that the WWI results from phase-locking in the visual system and that a circle map determines the dynamics of the illusion. Furthermore, our results suggest that the c-WWI is a consequence of continuous processing and cannot be used to support claims of discrete processing by the visual system.





Similar content being viewed by others
References
Andrews, D. P. (1965). Perception of contours in the central fovea. Nature, 205, 1218–1220.
Andrews, D. P. (1967). Perception of contour orientation in the central fovea. Part I. Short lines. Vision Research, 7, 975–997.
Andrews, T., & Purves, D. (2005). The wagon-wheel illusion in continuous light. Trends in Cognitive Sciences, 9(6), 261–263.
Arbib, M. A. (Ed.) (2002). The handbook of brain theory and neural networks. Cambridge: MIT Press.
Arnold, V. I. (1988). Geometrical methods in the theory of ordinary differential equations. New York: Springer.
Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge: Cambridge University Press.
Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M, & Cowey, A. (1992). Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex, 2, 295–309.
Belair, J. (1986). Periodic pulsatile stimulation of a nonlinear oscillator. Journal of Mathematical Biology, 24, 217.
Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844–3848.
Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of Computational Neuroscience, 4, 57–77.
Blakemore, C., Carpenter, R. H. S., & Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228, 237–260.
Bouma, H., & Andriessen, J. J. (1968). Perceived orientation of isolated line segments. Vision Research, 8, 493–507.
Bouma, H., & Andriessen, J. J. (1970). Induced changes in the perceived orientation of line segments. Vision Research, IO, 333–349.
Boyland, P. L. (1986). Bifurcations of circle maps: Arnol’d Tongues, bistability and rotation intervals. Communications in Mathematical Physics, 106, 353–381.
Brascamp, J. W., et al. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6, 1244–1256.
Carandini, M., & Ringach, D. L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research, 37, 30613071.
Carpenter, R. H. S., & Blakemore, C. (1973). Interactions between orientations in human vision. Brain Research, 18, 287–303.
Chapman, B., Zahs, K. R., & Stryker, M. P. (1991). Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in Ferret visual cortex. Journal of Neuroscience, 11, 1347–1358.
Chung, S., & Ferster, D. (1998). Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron, 20, 1177–1189.
Coullet, P., Tresser, C, & Arneodo, A. (1980). Transition to turbulence for doubly periodic flows. Physics Letters, 77A, (5), 327–331.
Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119–126.
Crook, J. M., Kisvrday, Z. F., & Eysel, U. T. (1997). GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity. Visual Neuroscience, 14, 141–158.
Crook, J. M., Kisvrday, Z. F., & Eysel, U. T. (1998). Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: Reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. European Journal of Neuroscience, 10, 2056–2075.
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A., & Suarez, H. H. (1995). Recurrent excitation in neocortical circuits. Science, 269, 981–985.
Edgerton, H. E. (1970). Electronic flash strobe. New York: McGraw-Hill.
Efron, R., & Lee, D. N. (1971). American Journal of Psychology, 84, 365.
Eysel, U. T., Crook, J. M., & Machemer, H. F. (1990). GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Experimental Brain Research, 80, 626–630.
Faraday, M. (1831). J. R. Inst. Great Britain 1, 205. Reprinted in Experimental researches in chemistry and physics (p. 291). London: Taylor & Francis (1859).
Ferster, D., Chung, S., & Wheat, H. (1996). Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature, 380, 249–252.
Ferster, D., & Koch, C. (1987). Neuronal connections underlying orientation selectivity in cat visual cortex. Trends in Neurosciences, 10, 487–492.
Finlay, D., Dodwell, P., & Caelli, T. (1984). Perception, 13, 237.
Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in threedimensional space. II. Coding of the direction of movement by a neuronal population. Journal of Neuroscience, 8, 2928–2937.
Gigante, G., Mattia, M., Braun, J., & Del Giudice, P. (2009). Bistable perception modeled as competing stochastic integrations at two levels. PLoS Computational Biology, 5(7), e1000430. doi:10.1371/journal.pcbi.1000430.
Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature (London), 410, 277.
Glass, L., Guevara, M., Shrier, A., & Perez, R. (1983). Bifurcation and chaos in a periodically stimulated cardiac oscillator. In Proc. of the Los Alamos conf. on ‘order in chaos,’ Physica 7D (pp. 89–103).
Glass, L., Guevara, M. R., Belair, J., & Shrier, A. (1984). Global bifurcations of a periodically forced biological oscillator. Physical Review A, 29(3), 1948–1357.
Glass, L., & Perez, R. (1982). Physical Review Letters, 48, 1772.
Glazier, J. A,, & Libchaber, A. (1988). Quasi-periodicity and dynamical systems. IEEE Transactions on Circuits and Systems, 35, 790–809.
Hata, Y., Tsumoto, T., Sato, H., Hagihara, K., & Tamura, H. (1988). Inhibition contributes to orientation selectivity in visual cortex of cat. Nature, 335, 815–817.
Holcombe, A. O., Clifford, C. W. G., Eagleman, D. M., & Pakarian, P. (2005). Illusory motion reversal in tune with motion detectors. Trends in Cognitive Sciences, 9(12), 559–560.
Holcombe, A. O., & Seizova-Cajic, T. (2008). Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli. Vision Research, 48, 1743–1757.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.
Kline, K. A., & Eagleman, D. M. (2008). Evidence against the temporal subsampling account of illusory motion. Journal of Vision, 8(4), 13, 1–5.
Kline, K., Holcombe, A. O., & Eagleman, D. M. (2004). Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Research, 44, 2653–2658.
Koch, C. (2004). The quest for consciousness: A neurobiological approach. Englewood: Roberts and Co.
Lund, J. S. (1987). Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A. Journal of Comparative Neurology, 257, 60–92.
Martineau, P., Aguilar, M., & Glass, L. (2009). Predicting perception of the Wagon Wheel Illusion. Physical Review Letters, 103, 028701.
McComas, A. J., & Cupido, C. M. (1999). The RULER model. Is this how the somatosensory cortex works? Clinical Neurophysiology, 110(11), 1987–1994.
Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.
Nelson, S., Toth, L., Sheth, B., & Sur, M. (1994). Orientation selectivity of cortical neurons during intra-cellular blockade of inhibition. Science, 265, 774–777.
Perez, R., & Glass, L. (1982). Bistability period doubling bifurcations and chaos in a periodically forced oscillator. Physics Letters, 90A, 441–443.
Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215–229.
Purves, D., Paydarfar, J. A., & Andrews, T. J. (1996). The Wagon Wheel Illusion in movies and reality. Proceedings of National Academy of Sciences USA, 93(8), 3693–3697.
Reid, R. C., & Alonso, J. M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378, 281–284.
Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of macaque. Journal of Physiology, 494, 757–771.
Schouten, J. F. (1967). Subjective stroboscopy and a model of visual movement detectors. In I. Wathen-Dunn (Ed.), Models for the perception of speech and visual form (pp. 44–45). Cambridge: MIT Press.
Sclar, G., & Freeman, R. D. (1982). Invariance of orientation tuning with stimulus contrast. Experimental Brain Research, 46, 457–461.
Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.
Sillito, A. M., Kemp, J. A., Milson, J. A., & Berardi, N. (1980). A reevaluation of the mechanisms underlying simple cell orientation selectivity. Brain Research, 194, 517–520.
Simpson, W. A., Shahani, U., & Manahilav, V. (2005). Illusory percepts of moving patterns due to discrete temporal sampling. Neuroscience Letters, 357(1), 23–27.
Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I., & Freeman R. D. (1987). The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology, 57, 773–786.
Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.
Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of Neurophysiology, 49, 1303–1318.
Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.
Tsumoto, T., Eckart, W., & Creutzfeld, O. D. (1979). Modifications of orientation sensitivity of cat visual cortex neurons by removal of GABA mediated inhibition. Experimental Brain Research, 34, 351–363.
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognition Science, 7(5), 207–213.
VanRullen, R., Reddy, L., & Koch, C. (2005). Attention-driven discrete sampling of motion perception. Proceedings of National Academy of Sciences of the United States of America, 102(14), 5291–5296.
VanRullen, R., Reddy, L., & Koch, C. (2006). The continuous Wagon Wheel Illusion is associated with changes in electroencephalogram power at 13Hz. The Journal of Neuroscience, 26(2), 502–507.
Wallace, G. K. (1969). The critical distance of interaction in the Zollner illusion. Perception and Psychophysics, II, 261–264.
Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.
Acknowledgement
The author gratefully acknowledges conversations with L. Glass.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Bard Ermentrout
Rights and permissions
About this article
Cite this article
Martineau, P. The Wagon Wheel Illusions and models of orientation selection. J Comput Neurosci 31, 273–284 (2011). https://doi.org/10.1007/s10827-010-0301-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-010-0301-0