Skip to main content
Log in

The Wagon Wheel Illusions and models of orientation selection

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present an analysis of the Wagon Wheel Illusions—classic psychophysical phenomena—in the context of a neural network model of orientation selectivity in the visual system. We find that both the continuous Wagon Wheel Illusion (c-WWI) and the standard, stroboscopic Wagon Wheel Illusion (WWI) can be explained by a recurrent model in which the cortex provides both excitatory and inhibitory feedback to a weakly tuned input from the lateral geniculate nucleus. Comparison of data from recent psychophysics experiments with theoretical predictions derived from the network dynamics leads to excellent agreement. Conversely, this agreement confirms the validity of the model and highlights the fact that the Wagon Wheel Illusion can serve as a useful probe of the human striate cortex. We find that the WWI results from phase-locking in the visual system and that a circle map determines the dynamics of the illusion. Furthermore, our results suggest that the c-WWI is a consequence of continuous processing and cannot be used to support claims of discrete processing by the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews, D. P. (1965). Perception of contours in the central fovea. Nature, 205, 1218–1220.

    Article  Google Scholar 

  • Andrews, D. P. (1967). Perception of contour orientation in the central fovea. Part I. Short lines. Vision Research, 7, 975–997.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, T., & Purves, D. (2005). The wagon-wheel illusion in continuous light. Trends in Cognitive Sciences, 9(6), 261–263.

    Article  PubMed  Google Scholar 

  • Arbib, M. A. (Ed.) (2002). The handbook of brain theory and neural networks. Cambridge: MIT Press.

    Google Scholar 

  • Arnold, V. I. (1988). Geometrical methods in the theory of ordinary differential equations. New York: Springer.

    Book  Google Scholar 

  • Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M, & Cowey, A. (1992). Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex, 2, 295–309.

    Article  PubMed  CAS  Google Scholar 

  • Belair, J. (1986). Periodic pulsatile stimulation of a nonlinear oscillator. Journal of Mathematical Biology, 24, 217.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844–3848.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of Computational Neuroscience, 4, 57–77.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C., Carpenter, R. H. S., & Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228, 237–260.

    Google Scholar 

  • Bouma, H., & Andriessen, J. J. (1968). Perceived orientation of isolated line segments. Vision Research, 8, 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Bouma, H., & Andriessen, J. J. (1970). Induced changes in the perceived orientation of line segments. Vision Research, IO, 333–349.

    Article  Google Scholar 

  • Boyland, P. L. (1986). Bifurcations of circle maps: Arnol’d Tongues, bistability and rotation intervals. Communications in Mathematical Physics, 106, 353–381.

    Article  Google Scholar 

  • Brascamp, J. W., et al. (2006). The time course of binocular rivalry reveals a fundamental role of noise. Journal of Vision, 6, 1244–1256.

    Article  PubMed  Google Scholar 

  • Carandini, M., & Ringach, D. L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research, 37, 30613071.

    Article  Google Scholar 

  • Carpenter, R. H. S., & Blakemore, C. (1973). Interactions between orientations in human vision. Brain Research, 18, 287–303.

    CAS  Google Scholar 

  • Chapman, B., Zahs, K. R., & Stryker, M. P. (1991). Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in Ferret visual cortex. Journal of Neuroscience, 11, 1347–1358.

    PubMed  CAS  Google Scholar 

  • Chung, S., & Ferster, D. (1998). Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron, 20, 1177–1189.

    Article  PubMed  CAS  Google Scholar 

  • Coullet, P., Tresser, C, & Arneodo, A. (1980). Transition to turbulence for doubly periodic flows. Physics Letters, 77A, (5), 327–331.

    Google Scholar 

  • Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Crook, J. M., Kisvrday, Z. F., & Eysel, U. T. (1997). GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity. Visual Neuroscience, 14, 141–158.

    Article  PubMed  CAS  Google Scholar 

  • Crook, J. M., Kisvrday, Z. F., & Eysel, U. T. (1998). Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: Reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. European Journal of Neuroscience, 10, 2056–2075.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A., & Suarez, H. H. (1995). Recurrent excitation in neocortical circuits. Science, 269, 981–985.

    Article  PubMed  CAS  Google Scholar 

  • Edgerton, H. E. (1970). Electronic flash strobe. New York: McGraw-Hill.

    Google Scholar 

  • Efron, R., & Lee, D. N. (1971). American Journal of Psychology, 84, 365.

    Article  PubMed  CAS  Google Scholar 

  • Eysel, U. T., Crook, J. M., & Machemer, H. F. (1990). GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Experimental Brain Research, 80, 626–630.

    Article  CAS  Google Scholar 

  • Faraday, M. (1831). J. R. Inst. Great Britain 1, 205. Reprinted in Experimental researches in chemistry and physics (p. 291). London: Taylor & Francis (1859).

  • Ferster, D., Chung, S., & Wheat, H. (1996). Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature, 380, 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D., & Koch, C. (1987). Neuronal connections underlying orientation selectivity in cat visual cortex. Trends in Neurosciences, 10, 487–492.

    Article  Google Scholar 

  • Finlay, D., Dodwell, P., & Caelli, T. (1984). Perception, 13, 237.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in threedimensional space. II. Coding of the direction of movement by a neuronal population. Journal of Neuroscience, 8, 2928–2937.

    PubMed  CAS  Google Scholar 

  • Gigante, G., Mattia, M., Braun, J., & Del Giudice, P. (2009). Bistable perception modeled as competing stochastic integrations at two levels. PLoS Computational Biology, 5(7), e1000430. doi:10.1371/journal.pcbi.1000430.

    Article  PubMed  Google Scholar 

  • Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature (London), 410, 277.

    Article  CAS  Google Scholar 

  • Glass, L., Guevara, M., Shrier, A., & Perez, R. (1983). Bifurcation and chaos in a periodically stimulated cardiac oscillator. In Proc. of the Los Alamos conf. on ‘order in chaos,’ Physica 7D (pp. 89–103).

  • Glass, L., Guevara, M. R., Belair, J., & Shrier, A. (1984). Global bifurcations of a periodically forced biological oscillator. Physical Review A, 29(3), 1948–1357.

    Article  Google Scholar 

  • Glass, L., & Perez, R. (1982). Physical Review Letters, 48, 1772.

    Article  Google Scholar 

  • Glazier, J. A,, & Libchaber, A. (1988). Quasi-periodicity and dynamical systems. IEEE Transactions on Circuits and Systems, 35, 790–809.

    Article  Google Scholar 

  • Hata, Y., Tsumoto, T., Sato, H., Hagihara, K., & Tamura, H. (1988). Inhibition contributes to orientation selectivity in visual cortex of cat. Nature, 335, 815–817.

    Article  PubMed  CAS  Google Scholar 

  • Holcombe, A. O., Clifford, C. W. G., Eagleman, D. M., & Pakarian, P. (2005). Illusory motion reversal in tune with motion detectors. Trends in Cognitive Sciences, 9(12), 559–560.

    Article  PubMed  Google Scholar 

  • Holcombe, A. O., & Seizova-Cajic, T. (2008). Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli. Vision Research, 48, 1743–1757.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Kline, K. A., & Eagleman, D. M. (2008). Evidence against the temporal subsampling account of illusory motion. Journal of Vision, 8(4), 13, 1–5.

    Article  PubMed  Google Scholar 

  • Kline, K., Holcombe, A. O., & Eagleman, D. M. (2004). Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Research, 44, 2653–2658.

    Article  PubMed  Google Scholar 

  • Koch, C. (2004). The quest for consciousness: A neurobiological approach. Englewood: Roberts and Co.

    Google Scholar 

  • Lund, J. S. (1987). Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A. Journal of Comparative Neurology, 257, 60–92.

    Article  PubMed  CAS  Google Scholar 

  • Martineau, P., Aguilar, M., & Glass, L. (2009). Predicting perception of the Wagon Wheel Illusion. Physical Review Letters, 103, 028701.

    Article  Google Scholar 

  • McComas, A. J., & Cupido, C. M. (1999). The RULER model. Is this how the somatosensory cortex works? Clinical Neurophysiology, 110(11), 1987–1994.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.

    Article  PubMed  Google Scholar 

  • Nelson, S., Toth, L., Sheth, B., & Sur, M. (1994). Orientation selectivity of cortical neurons during intra-cellular blockade of inhibition. Science, 265, 774–777.

    Article  PubMed  CAS  Google Scholar 

  • Perez, R., & Glass, L. (1982). Bistability period doubling bifurcations and chaos in a periodically forced oscillator. Physics Letters, 90A, 441–443.

    Google Scholar 

  • Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., Paydarfar, J. A., & Andrews, T. J. (1996). The Wagon Wheel Illusion in movies and reality. Proceedings of National Academy of Sciences USA, 93(8), 3693–3697.

    Article  CAS  Google Scholar 

  • Reid, R. C., & Alonso, J. M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of macaque. Journal of Physiology, 494, 757–771.

    PubMed  CAS  Google Scholar 

  • Schouten, J. F. (1967). Subjective stroboscopy and a model of visual movement detectors. In I. Wathen-Dunn (Ed.), Models for the perception of speech and visual form (pp. 44–45). Cambridge: MIT Press.

    Google Scholar 

  • Sclar, G., & Freeman, R. D. (1982). Invariance of orientation tuning with stimulus contrast. Experimental Brain Research, 46, 457–461.

    Article  CAS  Google Scholar 

  • Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.

    Article  PubMed  Google Scholar 

  • Sillito, A. M., Kemp, J. A., Milson, J. A., & Berardi, N. (1980). A reevaluation of the mechanisms underlying simple cell orientation selectivity. Brain Research, 194, 517–520.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, W. A., Shahani, U., & Manahilav, V. (2005). Illusory percepts of moving patterns due to discrete temporal sampling. Neuroscience Letters, 357(1), 23–27.

    Article  Google Scholar 

  • Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I., & Freeman R. D. (1987). The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology, 57, 773–786.

    PubMed  CAS  Google Scholar 

  • Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.

    PubMed  CAS  Google Scholar 

  • Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of Neurophysiology, 49, 1303–1318.

    PubMed  CAS  Google Scholar 

  • Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.

    PubMed  CAS  Google Scholar 

  • Tsumoto, T., Eckart, W., & Creutzfeld, O. D. (1979). Modifications of orientation sensitivity of cat visual cortex neurons by removal of GABA mediated inhibition. Experimental Brain Research, 34, 351–363.

    Article  CAS  Google Scholar 

  • VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognition Science, 7(5), 207–213.

    Article  Google Scholar 

  • VanRullen, R., Reddy, L., & Koch, C. (2005). Attention-driven discrete sampling of motion perception. Proceedings of National Academy of Sciences of the United States of America, 102(14), 5291–5296.

    Article  CAS  Google Scholar 

  • VanRullen, R., Reddy, L., & Koch, C. (2006). The continuous Wagon Wheel Illusion is associated with changes in electroencephalogram power at 13Hz. The Journal of Neuroscience, 26(2), 502–507.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, G. K. (1969). The critical distance of interaction in the Zollner illusion. Perception and Psychophysics, II, 261–264.

    Article  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges conversations with L. Glass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Martineau.

Additional information

Action Editor: Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martineau, P. The Wagon Wheel Illusions and models of orientation selection. J Comput Neurosci 31, 273–284 (2011). https://doi.org/10.1007/s10827-010-0301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0301-0

Keywords

Navigation