Skip to main content
Log in

Neurons as ideal change-point detectors

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Every computational unit in the brain monitors incoming signals, instant by instant, for meaningful changes in the face of stochastic fluctuation. Recent studies have suggested that even a single neuron can detect changes in noisy signals. In this paper, we demonstrate that a single leaky integrate-and-fire neuron can achieve change-point detection close to that of theoretical optimal, for uniform-rate process, functions even better than a Bayes-optimal algorithm when the underlying rate deviates from a presumed uniform rate process. Given a reasonable number of synaptic connections (order 104) and the rate of the input spike train, the values of the membrane time constant and the threshold found for optimizing change-point detection are close to those seen in biological neurons. These findings imply that biological neurons could act as sophisticated change-point detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M., & Cowey, A. (1992). Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex, 2(4), 295–309.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, P. K. (1994). Some aspects of change-point analysis. In E. Carlstein, H. Müller, & D. Siegmund (Eds.), Change-point problems (pp. 28–56). Hayward: Institute of Mathematical Statistics.

    Chapter  Google Scholar 

  • Brodsky, B. E., & Darkhovsky, B. S. (1993). Nonparametric methods in change-point problems. Dordrecht: Kluwer.

    Google Scholar 

  • Connors, B. W., Gutnick, M. J., & Prince, D. A. (1982). Electrophysiological properties of neocortical neurons in vitro. Journal of Neurophysiology, 48(6), 1302–1320.

    PubMed  CAS  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. London: MIT Press.

    Google Scholar 

  • de Lafuente, V., & Romo, R. (2005). Neuronal correlates of subjective sensory experience. Nature Neuroscience, 8(12), 1698–1703.

    Article  PubMed  Google Scholar 

  • Deneve, S. (2008). Bayesian spiking neurons I: inference. Neural Computation, 20(1), 91–117.

    Article  PubMed  Google Scholar 

  • Douglas, R. J., Martin, K. A., & Whitteridge, D. (1991). An intracellular analysis of the visual responses of neurones in cat visual cortex. Journal of Physiology, 440(1), 659–696.

    PubMed  CAS  Google Scholar 

  • Ferster, D. (1989). The synaptic inputs to simple cells of the cat visual cortex. In D. M.-K. Lam & C. D. Gilbert (Eds.), Neural mechanisms of visual perception. Proceedings of the Retina Research Foundation (pp. 68–86). The Woodlands: Portfolio Publishing Company.

    Google Scholar 

  • Ferster, D., & Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. Journal of Neuroscience, 12(4), 1262–1274.

    PubMed  CAS  Google Scholar 

  • Gardiner, C. W. (2009). Stochastic methods: a handbook for the natural and social sciences. Berlin: Springer.

    Google Scholar 

  • Ghose, G. M., & Harrison, I. T. (2009). Temporal precision of neuronal information in a rapid perceptual judgment. Journal of Neurophysiology, 101(3), 1480–1493.

    Article  PubMed  Google Scholar 

  • Goense, J. B. M., & Ratnam, R. (2003). Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance. Journal of Comparative Physiology, 189(10), 741–759.

    Article  PubMed  CAS  Google Scholar 

  • Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences, 5(1), 10–16.

    Article  PubMed  Google Scholar 

  • Herberts, T., & Jensen, U. (2004). Optimal detection of a change point in a Poisson process for different observation schemes. Scandinavian Journal of Statistics, 31(3), 347–366.

    Article  Google Scholar 

  • Iansek, R., & Redman, S. J. (1973). The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal of Physiology, 234(3), 665–688.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, Y. (1993). Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. Journal of Neurophysiology, 69(2), 416–431.

    PubMed  CAS  Google Scholar 

  • Keilson, J., & Ross, H. F. (1975). Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes. Selected Tables in mathematical statistics, 3, 233–327.

    Google Scholar 

  • Kim, H. G., & Connors, B. W. (1993). Apical dendrites of the neocortex: correlation between sodium-and calcium-dependent spiking and pyramidal cell morphology. Journal of Neuroscience, 13(12), 5301–5311.

    PubMed  CAS  Google Scholar 

  • Kim, J.-N., & Shadlen, M. N. (1999). Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience, 2, 176–185.

    Article  PubMed  Google Scholar 

  • Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in Computational Neuroscience, 3(9).

  • Lewis, B. L., & O’Donnell, P. (2000). Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D1 dopamine receptors. Cerebral Cortex, 10(12), 1168–1175.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3(9), 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Mason, A., Nicoll, A., & Stratford, K. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11(1), 72–84.

    PubMed  CAS  Google Scholar 

  • McCormick, D. A., Connors, B. W., Lighthall, J. W., & Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 54(4), 782–806.

    PubMed  CAS  Google Scholar 

  • Nicoll, A., & Blakemore, C. (1993). Single-fibre EPSPs in layer 5 of rat visual cortex in vitro. Neuroreport, 4(2), 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1–2), 100–115.

    Google Scholar 

  • Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: probing the physiology of perception. Annual Review of Neuroscience, 21(1), 227–277.

    Article  PubMed  CAS  Google Scholar 

  • Peskir, G., & Shiryaev, A. N. (2002). Solving the Poisson disorder problem. In K. Sandmann & P. Schönbucher (Eds.), Advances in Finance and Stochastics (pp. 295–312). Berlin: Springer.

    Google Scholar 

  • Peters, A. (1987). Synaptic specificity in the cerebral cortex. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.), Synaptic function (pp. 373–397). New York: Wiley.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., et al. (2004). Neuroscience (3rd ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Ratnam, R., Goense, J. B. M., & Nelson, M. E. (2003). Change-point detection in neuronal spike train activity. Neurocomputing, 52, 849–855.

    Article  Google Scholar 

  • Ricciardi, L. M., & Sato, S. (1988). First-passage-time density and moments of the Ornstein-Uhlenbeck process. Journal of Applied Probability, 25, 43–57.

    Article  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4(4), 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Shinomoto, S., Sakai, Y., & Funahashi, S. (1999). The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Computation, 11(4), 935–951.

    Article  PubMed  CAS  Google Scholar 

  • Shinomoto, S. (2010). Estimating the firing rate. In S. Gruen & S. Rotter (Eds.), Analysis of parallel spike train data. New York: Springer.

    Google Scholar 

  • Shiryaev, A. N. (1963). On optimum methods in quickest detection problems. Theory of Probability and its Applications, 8(1), 22–46.

    Article  Google Scholar 

  • Shiryaev, A. N. (1978). Optimal Stopping Rules. New York: Springer.

    Google Scholar 

  • Thomson, A. M., Deuchars, J., & West, D. C. (1993a). Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. Journal of Neurophysiology, 70(6), 2354–2369.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M., Deuchars, J., & West, D. C. (1993b). Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation. Neuroscience, 54(2), 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Uchida, N., Kepecs, A., & Mainen, Z. F. (2006). Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nature Reviews Neuroscience, 7(6), 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J. B. (1981). Well-timed diffusion approximations. Advances in Applied Probability, 13(2), 352–368.

    Article  Google Scholar 

  • Wang, L., Narayan, R., Graña, G., Shamir, M., & Sen, K. (2007). Cortical discrimination of complex natural stimuli: Can single neurons match behavior? Journal of Neuroscience, 27(3), 582–589.

    Article  PubMed  CAS  Google Scholar 

  • Wiener, M. C., & Richmond, B. J. (2003). Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model. Journal of Neuroscience, 23(6), 2394–2406.

    PubMed  CAS  Google Scholar 

  • Williams, S. R., & Stuart, G. J. (2002). Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science, 295(5561), 1907–1910.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16(7), 2397–2410.

    PubMed  CAS  Google Scholar 

  • Yang, C. R., Seamans, J. K., & Gorelova, N. (1996). Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. Journal of Neuroscience, 16(5), 1904–1921.

    PubMed  CAS  Google Scholar 

  • Yu, A. J. (2007). Optimal change-detection and spiking neurons. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19. Cambridge: MIT Press.

    Google Scholar 

  • Zacks, S. (1983). Survey of classical and Bayesian approaches to the change-point problem: fixed sample and sequential procedures for testing and estimation. In M. H. Rizvi, J. S. Rustagi, & D. Siegmund (Eds.), Recent Advances in Statistics. New York: Academic.

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by Grants-in-Aid for Scientific Research to SS from the MEXT Japan (20300083, 20020012) and the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence”. BJR’s participation in this study was supported by the IRP/NIMH. H.K. is supported by Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Shinomoto.

Additional information

Action Editor: Jonathan David Victor

Appendices

Appendix A: Monte Carlo procedure for computing a risk function

In accordance with the definition given in Eqs. (1) and (2), the risk function R is numerically computed as follows:

  • Iterate the following (i)–(iii) N times:

    1. (i)

      Generate a change-point θ j from the distribution \( p(\theta ) = {\bar{\theta }^{{ - 1}}}\exp (\theta /\bar{\theta }) \).

    2. (ii)

      Generate a Poisson spike train X t whose rate changes from λ (0) to λ (1) at time θ j , and simulate a detection time T j by simulating Eq. (4).

    3. (iii)

      Compute a single trial risk \( {U_j} = U({T_j},{\theta_j}) \).

  • Let \( R = \sum\nolimits_{{j = 1}}^N {{U_j}/N} \).

The iteration number, N, should be large enough for an accurate computation. In this study we set N at 105.

Appendix B: Approximation method for computing a risk function

To develop a fast method for computing the risk function, we approximate Eq. (4) to a diffusion process with the same first and second infinitesimal moments as in Eq. (4), i.e.,

$$ d{V_t} = - \frac{1}{\tau }{V_t}dt + d{X_t} \approx \mu ({V_t})dt + \sigma ({V_t})d{W_t}, $$
(7)

where μ(v), σ2(v), and W t denote the first and the second infinitesimal moments and the standard Wiener process, respectively. This diffusion approximation holds true in the limit of small amplitude of individual steps in the voltage and high frequency of spike arrival (Walsh 1981; Tuckwell 1988). From the relations that \( E[d{X_t}] = {\lambda^{{(i)}}}dt,\,E[d{X_t}d{X_{{t\prime}}}] = {\lambda^{{(i)}}}dt{\lambda^{{(i)}}}dt\prime + \delta (t - t\prime){\lambda^{{(i)}}}dtdt\prime \), (i = 0 for \( t,t\prime < \theta \), i = 1 for \( t,t\prime \geqslant \theta \)), and \( {V_t} = v\exp ( - t/\tau ) + \int_0^t {\exp ( - s/\tau )d{X_{{t - s}}}} \) on the condition \( {V_{{t = 0}}} = v \), we obtain the infinitesimal moments as follows:

$$ \begin{gathered} \mu (v) = \mathop{{\lim }}\limits_{{t \to 0}} \frac{1}{t}E[{V_t} - v] = - \frac{1}{\tau }(v - \tau {\lambda^{{(i)}}})\,, \\ {\sigma^2}(v) = \mathop{{\lim }}\limits_{{t \to 0}} \frac{1}{t}E\left[ {{{({V_t} - E({V_t}))}^2}} \right] = {\lambda^{{(i)}}}. \\ \end{gathered} $$
(8)

The stochastic differential equation in Eq. (7) is thus

$$ d{V_t} = - \frac{1}{\tau }({V_t} - \tau {\lambda_t})dt + \sqrt {{{\lambda_t}}} d{W_t}, $$
(9)

where λ (i) is replaced by λ t for simplicity. Equation (9) is an Ornstein-Uhlenbeck process (Gardiner 2009), which is a well-studied stochastic process. Because the time of detection T is the time when V t rises above threshold S for the first time, the distribution of T is equivalent to the first-passage-time distribution of Eq. (9). We denote it by p 0→S (t), where the subscript ab represents the initial state and the threshold of V t as a and b, respectively. According to the theory of stochastic differential equations (Gardiner 2009), p 0→S (t) can be expressed using the probability density of V t , denoted by P(V, t), as follows:

$$ {p_{{0 \to S}}}(t) = - \frac{\partial }{{\partial t}}\int_{{ - \infty }}^S {P(V,t)dV} $$
(10)

where P(V, t) satisfies the following partial differential (Fokker-Plank) equation for Eq. (9),

$$ \frac{{\partial P(V,t)}}{{\partial t}} = \frac{1}{2}{\lambda_t}\frac{{{\partial^2}P}}{{\partial {V^2}}} + \frac{1}{\tau }\frac{{\partial \left[ {(V - \tau {\lambda_t})P} \right]}}{{\partial V}} $$
(11)

under the boundary conditions

$$ \begin{gathered} P(V,0) = \delta (V)\,, \\ P(S,t) = 0\,, \\ \frac{{\partial P( - \infty, t)}}{{\partial V}} = 0\,. \\ \end{gathered} $$
(12)

Now, we express the risk function in Eq. (2) using p 0→S (t) and the distribution of change-point p (θ) as,

$$ R = \int {d\theta p(\theta )\left[ {\int_0^{\theta } {{p_{{0 \to S}}}(T)dT} + c\int_{\theta }^{\infty } {(T - \theta ){p_{{0 \to S}}}(T)dT} } \right]} \,. $$
(13)

From Eq. (10), the first term of Eq. (13) can be written as follows:

$$ \begin{gathered} \int {d\theta p(\theta )} \int_0^{\theta } {dt\left( { - \frac{\partial }{{\partial t}}\int_{{ - \infty }}^S {P(V,t)dV} } \right)} \hfill \\ = 1 - \int_{{ - \infty }}^S {f(V)dV}, \hfill \\ \end{gathered} $$
(14)

where

$$ f(V) = \int_0^{\infty } {p(\theta )P(V,\theta )d\theta } . $$
(15)

From Eqs. (11) and (12), f (V) satisfies the following equation,

$$ \begin{gathered} \frac{{\bar{\theta }{\lambda^{{(0)}}}}}{2}\frac{{{d^2}f(V)}}{{d{V^2}}} + \frac{{\bar{\theta }}}{\tau }(V - \tau {\lambda^{{(0)}}})\frac{{df}}{{dV}} + \left( {\frac{{\bar{\theta }}}{\tau } - 1} \right)f = \delta (V)\,, \hfill \\ f(S) = 0\,, \hfill \\ f( - \infty ) = 0\,. \hfill \\ \end{gathered} $$
(16)

Equation (16) can be reduced to a tridiagonal linear simultaneous equation, which is quick and easy to solve (Press et al. 1992). On the other hand, from the fact that the relation \( {p_{{0 \to S}}}(T) = \int {dVP(V,\theta ){p_{{V \to S}}}(T - \theta )} \) is valid when T > θ because Eq. (9) is a Markov process, the second term of Eq. (13) can be written as

$$ c\int_{{ - \infty }}^S {dVf(V)} \,\,\int_0^{\infty } {dt\,t{p_{{V \to S}}}(t)} $$
(17)

Here, \( \,\int_0^{\infty } {dt\,t{p_{{V \to S}}}(t)} \) is the first moment of the first-passage-time distribution of Eq. (9) for λ t = λ (1). We denote it by \( {t_1}(S|V) \). The explicit expression of \( {t_1}(S|V) \) for the Ornstein-Uhlenbeck process has already been derived (Ricciardi and Sato 1988), and we can quickly compute it using expansion formulas (Ricciardi and Sato 1988; Keilson and Ross 1975; Shinomoto et al. 1999). Finally, from Eqs. (14) and (17), we obtain the following fast-to-compute form:

$$ R = 1 - \int_{{ - \infty }}^S {\left[ {1 - c{t_1}(S|V)} \right]f(V)dV} $$
(18)

Appendix C: Bayes-optimal detection algorithm

The Bayes-optimal change-point has been determined based on the method of Peskir and Shiryaev (2002). In this method, the evolution of the likelihood ratio φ t is first computed with

$$ d{\phi_t} = (1 + {\phi_t})/\bar{\theta } dt + \left( {{\lambda^{{(1)}}}/{\lambda^{{(0)}}} - 1} \right) \,{\phi_{{t - }}} d({X_t} - {\lambda^{{(0)}}}t), $$
(19)

where \( {\phi_{{t - }}} = \mathop{{\lim }}\limits_{{s \to t - 0}} {\phi_s} \). The algorithm detects a change underlying the input signal X t when φ t first reaches a stopping point, which has been determined so as to minimize the risk R given λ (0), λ (1), \( \overline \theta \) and c. According to the optimal stopping theory of Markov process (Shiryaev 1978) the stopping point is given by \( {B_{ * }}/(1 - {B_{ * }}) \), where B * satisfies the following conditions:

$$ \begin{array}{*{20}{c}} {(LV)(\pi ) = - c\pi } \hfill & {(0 < \pi < {B_{ * }}),} \hfill \\ {V(\pi ) = 1 - \pi } \hfill & {({B_{ * }} \leqslant \pi \leqslant 1),} \hfill \\ {V({B_{ * }} - ) = 1 - {B_{ * }}} \hfill & {{\text{(continuous fit),}}} \hfill \\ \end{array} $$
(20)

where the differential-difference operator L was defined as

$$ \begin{gathered} (Lf)(\pi ) = \left( {\,1/\bar{\theta } - ({\lambda^{{(1)}}} - {\lambda^{{(0)}}})\pi } \right)\,\,(1 - \pi )\,f\prime(\pi ) \\ + \left( {{\lambda^{{(1)}}}\pi + {\lambda^{{(0)}}}(1 - \pi )} \right)\,\left( {f\left( {\frac{{{\lambda^{{(1)}}}\pi }}{{{\lambda^{{(1)}}}\pi + {\lambda^{{(0)}}}(1 - \pi )}}} \right) - f(\pi )} \right). \\ \end{gathered} $$
(21)

This free-boundary differential-difference problem is solved using the algorithm in (Peskir and Shiryaev 2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Richmond, B.J. & Shinomoto, S. Neurons as ideal change-point detectors. J Comput Neurosci 32, 137–146 (2012). https://doi.org/10.1007/s10827-011-0344-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0344-x

Keywords

Navigation