Skip to main content

Advertisement

Log in

Detecting effective connectivity in networks of coupled neuronal oscillators

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The application of data-driven time series analysis techniques such as Granger causality, partial directed coherence and phase dynamics modeling to estimate effective connectivity in brain networks has recently gained significant prominence in the neuroscience community. While these techniques have been useful in determining causal interactions among different regions of brain networks, a thorough analysis of the comparative accuracy and robustness of these methods in identifying patterns of effective connectivity among brain networks is still lacking. In this paper, we systematically address this issue within the context of simple networks of coupled spiking neurons. Specifically, we develop a method to assess the ability of various effective connectivity measures to accurately determine the true effective connectivity of a given neuronal network. Our method is based on decision tree classifiers which are trained using several time series features that can be observed solely from experimentally recorded data. We show that the classifiers constructed in this work provide a general framework for determining whether a particular effective connectivity measure is likely to produce incorrect results when applied to a dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abarbanel, H., Gibb, L., Huerta, R., & Rabinovich, M. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214.

    Article  PubMed  Google Scholar 

  • Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the institute of Statistical Mathematics, 21, 243.

    Article  Google Scholar 

  • Astolfi, L., Cincotti, F., Mattia, D., Marciani, M., Baccala, L., Fallani, F., et al. (2007). Comparison of different cortical connectivity estimators for high-resolution eeg recordings. Human Brain Mapping, 28, 143.

    Article  PubMed  Google Scholar 

  • Baccala, L., & Sameshima, K. (2001). Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics, 84(6), 463–474.

    Article  PubMed  CAS  Google Scholar 

  • Baccala, L., Sameshima, K., Ballester, G., Valle, A. D., & Timo-Iaria, C. (1998). Studying the interaction between brain structures via directed coherence and granger causality. Applied Signal Processing, 5(1), 40.

    Article  Google Scholar 

  • Baccala, L., Sameshima, K., & Takahashi, D. (2007). Generalized partial directed coherence. In Proceedings of the 15th international conference on digital signal processing, Cardiff, Wales, UK (pp. 163–166).

  • Balenzuela, P., & García-Ojalvo, J. (2005). Role of chemical synapses in coupled neurons with noise. Physical Review. E, Statistical, Nonlinear and Soft Matter Physics, 72(2 Pt 1), 021901.

    Article  Google Scholar 

  • Bennett, M. (1997). Gap junctions as electrical synapses. Journal of Neurocytology, 26, 249.

    Article  Google Scholar 

  • Bezruchko, B., Ponomarenko, V., Rosenblum, M., & Pikovsky, A. (2003). Characterizing direction of coupling from experimental observations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 13, 179.

    Article  Google Scholar 

  • Blair, R., & Karniski, W. (1993). An alternative method for significance testing of waveform difference potentials. Psychophysiology, 30, 518.

    Article  PubMed  CAS  Google Scholar 

  • Box, G., Jenkins, G., & Reinsel, G. (2008). Time series analysis: Forecasting and control (4th ed.). Hoboken: Wiley.

    Google Scholar 

  • Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression trees. New York: Chapman and Hall.

    Google Scholar 

  • Brockwell, P., & Davis, R. (1991). Time series: Theory and methods. New York: Springer.

    Book  Google Scholar 

  • Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., & Bressler, S. (2004). Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9849–9854.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G. (2006). Rhythms of the brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929.

    Article  PubMed  CAS  Google Scholar 

  • Cadotte, A., DeMarse, T., Mareci, T., Parekh, M., Talathi, S., Hwang, D. U., et al. (2010). Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. Journal of Neuroscience Methods, 189, 121–129.

    Article  PubMed  Google Scholar 

  • Chen, Y., Bressler, S., & Ding, M. (2006). Frequency decomposition of conditional granger causality and application to multivariate neural field potential data. Journal of Neuroscience Methods, 150(2), 228.

    Article  PubMed  Google Scholar 

  • Chow, C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. Neural Computation, 12(7), 1643.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, R., & MacKinnon, J. (2003). Econometric theory and methods. Oxford: Oxford University Press.

    Google Scholar 

  • Deister, C., Teagarden, M., Wilson, C., & Paladini, C. (2009). An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. Journal of Neuroscience, 29, 15888–15897.

    Article  PubMed  CAS  Google Scholar 

  • Ding, M., Chen, Y., & Bressler, S. (2006). Granger causality: basic theory and application to neuroscience. In B. Schelter, M. Winterhalder, & J. Timmer (Eds.), Handbook of time series analysis (p. 451). Weinheim: Wiley-VCH.

    Google Scholar 

  • Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering, 29(10), 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, B. (1996). Type 1 membranes, phase resetting curves, and synchrony. Neural Computation, 8(5), 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Fanselow, E. E., Sameshima, K., Baccala, L. A., & Nicolelis, M. A. (2001). Thalamic bursting in rats during different awake behavioral states. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15330–15335. doi:10.1073/pnas.261273898.

    Article  PubMed  CAS  Google Scholar 

  • Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 32, 209–224.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 68(2), 113–143.

    Article  PubMed  Google Scholar 

  • Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77(378), 304.

    Google Scholar 

  • Geweke, J. (1984). Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907–915.

    Google Scholar 

  • Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 37(3), 424.

    Article  Google Scholar 

  • Granger, C. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics & Control, 2, 329–352.

    Article  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neuroscience, 30(7), 357–364.

    Article  CAS  Google Scholar 

  • Havlicek, M., Jan, J., Brazdil, M., & Calhoun, V. (2010). Dynamic granger causality based on kalman filter for evaluation of functional network connectivity in FMRI data. NeuroImage, 53, 65–77.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT Press.

    Google Scholar 

  • Kaminski, M., & Blinowska, K. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Kamiński, M., Ding, M., Truccolo, W., & Bressler, S. (2001). Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85(2), 145.

    Article  PubMed  Google Scholar 

  • Kayser, A., Sun, F., & D’Esposito, M. (2009). A comparison of granger causality and coherency in FMRI-based analysis of the motor system. Human Brain Mapping, 30(11), 3475.

    Article  PubMed  Google Scholar 

  • Lecar, H. (2007). Morris–lecar model. Scholarpedia, 2, 1333. www.scholarpedia.com.

  • Liao, W., Mantini, D., Zhang, Z., Pan, Z., Ding, J., Gong, Q., et al. (2010). Evaluating the effective connectivity of resting state networks using conditional granger causality. Biological Cybernetics, 102(1), 57–69.

    Article  PubMed  Google Scholar 

  • Lindsly, C., & Frazier, C. J. (2010). Two distinct and activity-dependent mechanisms contribute to autoreceptor-mediated inhibition of gabaergic afferents to hilar mossy cells. Journal of Physiology, 588(Pt 15), 2801–22. doi:10.1113/jphysiol.2009.184648.

    Article  PubMed  CAS  Google Scholar 

  • Lungarella, M., Ishiguro, K., Kuniyoshi, Y., & Otsu, N. (2007). Methods for quantifying the causal structure of bivariate time series. International Journal of Bifurcation and Chaos, 17, 903–921.

    Article  Google Scholar 

  • Lütkepohl, H. (2010). New introduction to multiple time series analysis. New York: Springer.

    Google Scholar 

  • MacKinnon, J. (2006), Bootstrap methods in econometrics. Economic Record, 82, S2.

    Article  Google Scholar 

  • Mormann, F., Lehnertz, K., David, P., & Elger, C. (2000). Mean phase coherence as a measure for phase synchronization and its application to the eeg of epilepsy patients. Physica D: Nonlinear Phenomena, 144, 358.

    Article  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Nedungadi, A. G., Rangarajan, G., Jain, N., & Ding, M. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27(1), 55–64. doi:10.1007/s10827-008-0126-2.

    Article  PubMed  Google Scholar 

  • Perkel, D., Gerstein, G., & Moore, G. (1967). Neuronal spike trains and stochastic point processes: I. the single spike train. Biophysical Journal, 7(4), 391–418.

    Article  PubMed  CAS  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2002). Synchronization: A universal concept in nonlinear sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rosenblum, M., & Pikovsky, A. (2001). Detecting direction of coupling in interacting oscillators. Physical Review E, 64(4), 45202.

    Article  CAS  Google Scholar 

  • Sato, J., Takahashi, D., Arcuri, S., Sameshima, K., Morettin, P., & Baccalá, L. (2009). Frequency domain connectivity identification: An application of partial directed coherence in FMRI. Human Brain Mapping, 30(2), 452.

    Article  PubMed  Google Scholar 

  • Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine Learning, 13, 135–143.

    Google Scholar 

  • Schelter, B., Winterhalder, M., Eichler, M., Peifer, M., Hellwig, B., Guschlbauer, B., et al. (2006). Testing for directed influences among neural signals using partial directed coherence. Journal of Neuroscience Methods, 152(1–2), 210–219.

    Article  PubMed  Google Scholar 

  • Schneider, T., & Neumaier, A. (2001). Algorithm 808: Arfit—a matlab package for estimation and spectral decomposition of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 58–65.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Smirnov, D., & Andrzejak, R. (2005). Detection of weak directional coupling: Phase-dynamics approach versus state-space approach. Physical Review E, 71(3), 36207.

    Article  Google Scholar 

  • Smirnov, D., & Bezruchko, B. (2009). Detection of couplings in ensembles of stochastic oscillators. Physical Review E, 79(4), 046204.

    Article  Google Scholar 

  • Smirnov, D., Schelter, B., Winterhalder, M., & Timmer, J. (2007). Revealing direction of coupling between neuronal oscillators from time series: Phase dynamics modeling versus partial directed coherence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17, 013111.

    Article  Google Scholar 

  • Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68, 393.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O. (2010). Networks of the brain. Cambridge: MIT Press.

    Google Scholar 

  • Talathi, S., Hwang, D. U., Carney, P., & Ditto, W. (2010). Synchrony with shunting inhibition in a feedforward inhibitory network. Journal of Computational Neuroscience, 28, 305.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews. Neuroscience, 11, 100–113.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–6413.

    PubMed  CAS  Google Scholar 

  • Ward, L. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Science, 7(12), 553–559.

    Article  Google Scholar 

  • Winterhalder, M., Schelter, B., Hesse, W., Schwab, K., Leistritz, L., Klan, D., et al. (2005). Comparison of linear signal process techniques to infer directed interactions in multivariate neural systems. Signal Processing, 85(11), 2137–2160.

    Article  Google Scholar 

  • Winterhalder, M., Schelter, B., & Timmer, J. (2007). Detecting coupling directions in multivariate oscillatory systems. International Journal of Bifurcation and Chaos, 17, 3725–3739.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded from the start-up funding to SST through the Dept of Pediatrics at UF and the startup funding to WOO and alumina fellowship to ERB through the Dept of Biomedical Eng at UF. SST and PRC were partially funded through the Children’s Miracle Network Funds and Eve and B. Wilder Center of Excellence for Epilepsy Research. PPK was partially funded through the Eckis Professor Endowment at the University of Florida. We appreciate constructive feedback from Dr. Alex Cadotte. We also acknowledge the generosity of Dr CJ Frazier for allowing access to his electrophysiology rig set up and Ms. Aishwarya Parthasarthy for assistance in setting up the dynamic clamp and collection of experimental datasets. We finally acknowledge assistance from Mr. Kyungpyo Hong in generating Fig. 2 of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Talathi.

Additional information

Action Editor: Rob Kass

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boykin, E.R., Khargonekar, P.P., Carney, P.R. et al. Detecting effective connectivity in networks of coupled neuronal oscillators. J Comput Neurosci 32, 521–538 (2012). https://doi.org/10.1007/s10827-011-0367-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0367-3

Keywords

Navigation