Skip to main content

Advertisement

Log in

Does dynamical synchronization among neurons facilitate learning and enhance task performance?

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Synchronization among groups of neurons is an interesting yet mysterious mechanism in the brain. We propose and demonstrate that the adjustable timing of neural activities can produce profound effect on learning and task implementation. On one hand, learning of more complex patterns becomes possible because of the enhanced capability of classification. On the other hand, implementation of a complex task is aided through active maintenance and control of multiple rules and items. This sheds light on the development of new intelligent system, as well as the cause of impaired learning and task performance in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EEG:

Electroencephalogram

XOR:

Exclusive-or

WCST:

Wisconsin Card Sorting Test

References

  • Anderson, K. L., Rajagovindan, R., Ghacibeh, G. A., Meador, K. J., & Ding, M. (2010). Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cerebral Cortex, 20, 1604–1612.

    Article  PubMed  Google Scholar 

  • Axmacher, N., Schmitz, D. P., Wagner, T., Elger, C. E., & Fell, J. (2008). Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. The Journal of Neuroscience, 28(29), 7304–7312.

    Article  PubMed  CAS  Google Scholar 

  • Borisyuk, R., Kazanovich, Y., Chik, D., Tikhanoff, V., & Cangelosi, A. (2009). A neural model of selective attention and object segmentation in the visual scene: an approach based on partial synchronization and star-like architecture of connections. Neural Networks, 22, 707–719.

    Article  PubMed  Google Scholar 

  • Buzsaki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33, 1–20.

    Article  Google Scholar 

  • Cho, R. Y., Konecky, R. O., & Carte, C. S. (2006). Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. PNAS, 103(52), 19878–19883.

    Article  PubMed  CAS  Google Scholar 

  • Crouse, S. L. (2001). Learning disabilities self-advocacy manual (ch. 2). Online Training and Education Portal.

  • D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transaction of Royal Society B, 362, 761–772.

    Article  Google Scholar 

  • Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.

    Article  PubMed  CAS  Google Scholar 

  • Fell, J., Fernandez, G., Klaver, P., Elger, C. E., & Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research Reviews, 42, 265–272.

    Article  PubMed  Google Scholar 

  • Fries, P., Reynolds, J., Rorie, A., & Deimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.

    Article  PubMed  CAS  Google Scholar 

  • Gawne, T. J., Kjaer, T. W., & Richmond, B. J. (1996). Latency: another potential code for feature binding in striate cortex. Journal of Neurophysiology, 76(2), 1356–1360.

    PubMed  CAS  Google Scholar 

  • Gollisch, T., & Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science, 319, 1108–1111.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M. (1999). The temporal correlation hypothesis is still alive and well. Neuron, 24, 31–47.

    Article  PubMed  CAS  Google Scholar 

  • Gregoriou, G. G., Gotts, S. J., Zhou, H. H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324, 1207–1210.

    Article  PubMed  CAS  Google Scholar 

  • Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., & Schnitzler, A. (2004). Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. PNAS, 101(35), 13050–13055.

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., Brandona, M. P., Yoshidaa, M., Giocomoa, L. M., Heysa, J. G., Fransena, E., Newmana, E. L., & Zilli, E. A. (2009). A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Networks, 22(8), 1129–1138.

    Article  PubMed  Google Scholar 

  • Hyafil, A., Summerfield, C., & Koechlin, E. (2009). Two mechanisms for task switching in the prefrontal cortex. Journal of Neuroscience, 29(16), 5135–5142.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28(2), 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, R. S., & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience, 7(2), 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, M., Kitajo, K., & Yamaguchi, Y. (2010). Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. European Journal of Neuroscience, 31(9), 1683–1689.

    PubMed  Google Scholar 

  • Keri, S., Szekeres, G., Szendi, I., Antal, A., Kovacs, Z., Janka, Z., & Benedek, G. (1999). Category learning and perceptual categorization in Schizophrenia. Schizophrenia Bulletin, 25(3), 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Khatri, V., Hartings, J. A., & Simons, D. J. (2004). Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. Journal of Neurophysiology, 92, 3244–3254.

    Article  PubMed  CAS  Google Scholar 

  • Krofczik, S., Menzel, R., & Nawrot, M. P. (2009). Rapid odor processing in the honeybee antennal lobe network. Frontiers in Computational Neuroscience, 2(9), 1–13.

    Google Scholar 

  • Lezak, M. D. (2004). Neuropsychological Assessment (ch. 7). Oxford University Press.

  • Lumer, E. D. (2000). Effects of spike timing on winner-take-all competition in model cortical circuits. Neural Computation, 12(1), 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist, M., Herman, P., & Lansner, A. (2011). Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. Journal of Cognitive Neuroscience, 23(10), 3008–3020.

    Article  PubMed  Google Scholar 

  • Mansouri, F. A., Matsumoto, K., & Tanaka, K. (2006). Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog. The Journal of Neuroscience, 26(10), 2745–2756.

    Article  PubMed  CAS  Google Scholar 

  • Margrie, T., & Schaefer, A. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. The Journal of Physiology, 546, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. The Journal of Neuroscience, 27(11), 2858–2865.

    Article  PubMed  CAS  Google Scholar 

  • Milne, E., Scope, A., Pascalis, O., Buckley, D., & Makeig, S. (2009). Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biological Psychiatry, 65(1), 22–30.

    Article  PubMed  Google Scholar 

  • Milner, B. (1963). Effect of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.

    Article  Google Scholar 

  • Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. MIT Press.

  • Mishra, J., Fellous, J. M., & Sejnowski, T. J. (2006). Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron. Neural Networks, 19(9), 1329–1346.

    Article  PubMed  Google Scholar 

  • Nakatani, H., & van Leeuwen, C. (2006). Transient synchrony of distant brain areas and perceptual switching in ambiguous figures. Biological Cybernetics, 94, 445–457.

    Article  PubMed  Google Scholar 

  • Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neural synchrony reveals working memory networks and predicts individual memory capacity. PNAS, 107(16), 7580–7585.

    Article  PubMed  CAS  Google Scholar 

  • Ren, M., Yoshimura, Y., Takada, N., Horibe, S., & Komatsu, Y. (2007). Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons. Science, 316(5825), 758–761.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, G. P., Czudek, C., & Andrews, H. B. (1990). Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biological Psychiatry, 27(9), 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  • Rigotti, M., Rubin, D. B. D., Wang, X. J., & Fusi, S. (2010). Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Frontiers in Computational Neuroscience, 4(24), 1–29.

    Google Scholar 

  • Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. PNAS, 95, 7092–7096.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. PNAS, 106(50), 21341–21346.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  CAS  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113.

    Article  PubMed  CAS  Google Scholar 

  • van der Malsburg, C. (2001). Neural basis of binding problem. In N. J. Smelser, & P. B. Baltes (Eds.), International encyclopedia of social and behavioural sciences (pp. 1178–1180). Elsevier.

  • Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57(11), 1336–1346.

    Article  PubMed  Google Scholar 

  • Yamaguchi, Y. (2003). A theory of hippocampal memory based on theta phase precession. Biological Cybernetics, 89(1), 1–9.

    PubMed  Google Scholar 

  • Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8(11), 1552–1559.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Rigotti and Fusi for permission of using their figures. The author also thanks his wife Irene for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chik.

Additional information

Action Editor: X.-J. Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chik, D. Does dynamical synchronization among neurons facilitate learning and enhance task performance?. J Comput Neurosci 33, 169–177 (2012). https://doi.org/10.1007/s10827-011-0380-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0380-6

Keywords