Abstract
Synchronization among groups of neurons is an interesting yet mysterious mechanism in the brain. We propose and demonstrate that the adjustable timing of neural activities can produce profound effect on learning and task implementation. On one hand, learning of more complex patterns becomes possible because of the enhanced capability of classification. On the other hand, implementation of a complex task is aided through active maintenance and control of multiple rules and items. This sheds light on the development of new intelligent system, as well as the cause of impaired learning and task performance in patients.







Similar content being viewed by others
Abbreviations
- EEG:
-
Electroencephalogram
- XOR:
-
Exclusive-or
- WCST:
-
Wisconsin Card Sorting Test
References
Anderson, K. L., Rajagovindan, R., Ghacibeh, G. A., Meador, K. J., & Ding, M. (2010). Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cerebral Cortex, 20, 1604–1612.
Axmacher, N., Schmitz, D. P., Wagner, T., Elger, C. E., & Fell, J. (2008). Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. The Journal of Neuroscience, 28(29), 7304–7312.
Borisyuk, R., Kazanovich, Y., Chik, D., Tikhanoff, V., & Cangelosi, A. (2009). A neural model of selective attention and object segmentation in the visual scene: an approach based on partial synchronization and star-like architecture of connections. Neural Networks, 22, 707–719.
Buzsaki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33, 1–20.
Cho, R. Y., Konecky, R. O., & Carte, C. S. (2006). Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. PNAS, 103(52), 19878–19883.
Crouse, S. L. (2001). Learning disabilities self-advocacy manual (ch. 2). Online Training and Education Portal.
D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transaction of Royal Society B, 362, 761–772.
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.
Fell, J., Fernandez, G., Klaver, P., Elger, C. E., & Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research Reviews, 42, 265–272.
Fries, P., Reynolds, J., Rorie, A., & Deimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.
Gawne, T. J., Kjaer, T. W., & Richmond, B. J. (1996). Latency: another potential code for feature binding in striate cortex. Journal of Neurophysiology, 76(2), 1356–1360.
Gollisch, T., & Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science, 319, 1108–1111.
Gray, C. M. (1999). The temporal correlation hypothesis is still alive and well. Neuron, 24, 31–47.
Gregoriou, G. G., Gotts, S. J., Zhou, H. H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324, 1207–1210.
Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., & Schnitzler, A. (2004). Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. PNAS, 101(35), 13050–13055.
Hasselmo, M. E., Brandona, M. P., Yoshidaa, M., Giocomoa, L. M., Heysa, J. G., Fransena, E., Newmana, E. L., & Zilli, E. A. (2009). A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Networks, 22(8), 1129–1138.
Hyafil, A., Summerfield, C., & Koechlin, E. (2009). Two mechanisms for task switching in the prefrontal cortex. Journal of Neuroscience, 29(16), 5135–5142.
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.
Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28(2), 67–72.
Johansson, R. S., & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience, 7(2), 170–177.
Kawasaki, M., Kitajo, K., & Yamaguchi, Y. (2010). Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. European Journal of Neuroscience, 31(9), 1683–1689.
Keri, S., Szekeres, G., Szendi, I., Antal, A., Kovacs, Z., Janka, Z., & Benedek, G. (1999). Category learning and perceptual categorization in Schizophrenia. Schizophrenia Bulletin, 25(3), 593–600.
Khatri, V., Hartings, J. A., & Simons, D. J. (2004). Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. Journal of Neurophysiology, 92, 3244–3254.
Krofczik, S., Menzel, R., & Nawrot, M. P. (2009). Rapid odor processing in the honeybee antennal lobe network. Frontiers in Computational Neuroscience, 2(9), 1–13.
Lezak, M. D. (2004). Neuropsychological Assessment (ch. 7). Oxford University Press.
Lumer, E. D. (2000). Effects of spike timing on winner-take-all competition in model cortical circuits. Neural Computation, 12(1), 181–194.
Lundqvist, M., Herman, P., & Lansner, A. (2011). Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. Journal of Cognitive Neuroscience, 23(10), 3008–3020.
Mansouri, F. A., Matsumoto, K., & Tanaka, K. (2006). Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog. The Journal of Neuroscience, 26(10), 2745–2756.
Margrie, T., & Schaefer, A. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. The Journal of Physiology, 546, 363–374.
Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. The Journal of Neuroscience, 27(11), 2858–2865.
Milne, E., Scope, A., Pascalis, O., Buckley, D., & Makeig, S. (2009). Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biological Psychiatry, 65(1), 22–30.
Milner, B. (1963). Effect of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.
Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. MIT Press.
Mishra, J., Fellous, J. M., & Sejnowski, T. J. (2006). Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron. Neural Networks, 19(9), 1329–1346.
Nakatani, H., & van Leeuwen, C. (2006). Transient synchrony of distant brain areas and perceptual switching in ambiguous figures. Biological Cybernetics, 94, 445–457.
Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neural synchrony reveals working memory networks and predicts individual memory capacity. PNAS, 107(16), 7580–7585.
Ren, M., Yoshimura, Y., Takada, N., Horibe, S., & Komatsu, Y. (2007). Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons. Science, 316(5825), 758–761.
Reynolds, G. P., Czudek, C., & Andrews, H. B. (1990). Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biological Psychiatry, 27(9), 1038–1044.
Rigotti, M., Rubin, D. B. D., Wang, X. J., & Fusi, S. (2010). Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Frontiers in Computational Neuroscience, 4(24), 1–29.
Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430–433.
Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. PNAS, 95, 7092–7096.
Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. PNAS, 106(50), 21341–21346.
Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24, 49–65.
Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.
Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113.
van der Malsburg, C. (2001). Neural basis of binding problem. In N. J. Smelser, & P. B. Baltes (Eds.), International encyclopedia of social and behavioural sciences (pp. 1178–1180). Elsevier.
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57(11), 1336–1346.
Yamaguchi, Y. (2003). A theory of hippocampal memory based on theta phase precession. Biological Cybernetics, 89(1), 1–9.
Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8(11), 1552–1559.
Acknowledgements
The author would like to thank Rigotti and Fusi for permission of using their figures. The author also thanks his wife Irene for proofreading the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: X.-J. Wang
Rights and permissions
About this article
Cite this article
Chik, D. Does dynamical synchronization among neurons facilitate learning and enhance task performance?. J Comput Neurosci 33, 169–177 (2012). https://doi.org/10.1007/s10827-011-0380-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-011-0380-6