Abstract
It is evident that the cortex plays a primary role in seizure generation. At the same time, various experimental results clearly confirm that thalamic neurons are also actively involved in seizure generation and spreading. On the other hand, recent neurophysiologic findings suggest that astrocytes regulate dynamically the synaptic activity in neuronal networks. Therefore, in the present study, the thalamocortical neural population model (TCPM) is modified by embedding into the model the functional role of astrocytes in the regulation of synaptic transmission. Using the modified TCPM (MTCPM) we examined the hypothesis that one of the possible causes of neural hypersynchronization is the dysfunction of astrocytes in the regulatory feedback loop. Then, two MTCPMs are coupled via excitatory synapses and the astrocytes are also coupled together through gap junctions. Utilizing the MTCPM and CMTCPM, the transition from normal to malfunctioned states is analyzed using a dynamical system approach. In this way, the hypothesis is investigated and it is demonstrated that the healthy astrocytes provide feedback control to regulate neural activity. That is, the astrocytes compensate to a large extent variations in the coupling between neural populations and maintain the balance between the excitation and inhibition levels. However, the malfunctioned astrocytes are no longer able to regulate and/or compensate the excessive increase of the inter-population coupling strength. As a consequence, disruption of the signaling function of astrocytes could contribute to the neuronal hyperexcitability and generating epileptiform activity. These results suggest that astrocytes might be one of the potential targets for the treatment of epilepsy.









Similar content being viewed by others
References
Amiri, M., Davoodi, E., Bahrami, F., & Raza, M. (2011a). Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients. Math and Computers in Simulation, 81, 2471–2491.
Amiri, M., Bahrami, F., & Janahmadi, M. (2011b). Functional modeling of astrocytes in epilepsy: A feedback system perspective”. Neural Computing and Applications, 20(8), 1131–1139.
Amiri, M., Montaseri, G., & Bahrami, F. (2011c). On the role of astrocytes in synchronization of two coupled neurons: A mathematical perspective. Biological Cybernetics, 105, 153–166.
Amiri, M., Bahrami, F., & Janahmadi, M. (2012a). Functional contributions of astrocytes in synchronization of a neuronal network model. Journal of Theoretical Biology, 292, 60–70.
Amiri, M., Bahrami, F., & Janahmadi, M. (2012b). On the role of astrocytes in epilepsy: a functional modeling approach. Neuroscience Research, 7, 172–180.
Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22, 208–215.
Benarroch, E. E. (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clinic Proceedings, 80, 1326–1338.
Bentzen, N. C. K., Zhabotinsky, A. M., & Laugesen, J. L. (2009). Modeling of glutamate-induced dynamical patterns. International Journal of Neural Systems, 19, 395–407.
Binder, D. K., & Steinhäuser, C. (2009). Role of astrocytes in Epilepsy. V. Parpura, P.G. Haydon (Eds.), Astrocytes in (Patho)Physiology of the Nervous System (pp. 649–671). Springer Science.
Chakravarthy, N., Sabesan, S., Tsakalis, K., & Iasemidis, L. D. (2009a). Controlling epileptic seizures in a neural mass model. Journal of Combinatorial Optimization, 17, 98–116.
Chakravarthy, N., Tsakalis, K., Sabesan, S., & Iasemidis, L. D. (2009b). Homeostasis of brain dynamics in epilepsy: A feedback control systems perspective of seizures. Annals of Biomedical Engineering, 37, 565–585.
Cressman, J. R., Jr., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience, 26, 159–170.
De Keyser, J., Mostert, J. P., & Koch, M. W. (2008). Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. Journal of the Neurological Sciences, 267, 3–16.
Destexhe, A. (2008). Corticothalamic feedback: a key to explain absence seizures. In I. Soltesz & K. Staley (Eds.), Computational neuroscience in epilepsy (pp. 184–214). Amsterdam: Elsevier.
Eid, T., Lee, T. S., Thomas, M. J., Amiry-Moghaddam, M., Bjørnsen, L. P., Spencer, D. D., et al. (2005). Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 102, 1193–1198.
Fellin, T. (2009). Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. Journal of Neurochemistry, 108, 533–544.
Fellin, T., & Carmignoto, G. (2004). Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J. Physio, 559, 3–15.
Fellin, T., Pascual, O., & Haydon, P. G. (2006). Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Journal of Physiology, 21, 208–215.
Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In I. Soltesz & K. Staley (Eds.), Computational neuroscience in epilepsy (pp. 419–439). Amsterdam: Elsevier.
Garbo, A. D. (2009). Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. Journal of Biological Physics, 35, 361–382.
Gertrudis, P., & Araque, A. (2005). Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. Journal of Neuroscience, 25, 2192–2203.
Halassa, M. M., Fellin, T., & Haydon, P. G. (2007). The tripartite synapse: roles for gliotransmission in health and disease. Trends in Molecular Medicine, 13, 54–63.
Halassa, M. M., Fellin, T., & Haydon, P. G. (2009). Tripartite synapses: Roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology, 57, 343–346.
Haydon, P. G., & Araque, A. (2002). Astrocytes as modulators of synaptic transmission. In: The tripartite synapse: Glia in Synaptic Transmission (pp. 185–198). New York: Oxford UP.
Hertz, L., & Zielke, H. R. (2004). Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends in Neurosciences, 27, 735–743.
Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50, 549–558.
Iasemidis, L. D., Shiau, D. S., Sackellares, J. C., Pardalos, P. M., & Prasad, A. (2004). Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Transactions on Biomedical Engineering, 51, 493–506.
Jabs, R., Seifert, G., & Steinhäuser, C. (2008). Astrocytic function and its alteration in the epileptic brain. Epilepsia, 49, 3–12.
Koizumi, S. (2010). Synchronization of Ca2+ oscillations: involvement of ATP release in astrocytes. FEBS Journal, 277, 286–292.
Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., & Ikegaya, Y. (2011). Large-scale calcium waves traveling through astrocytic networks in vivo. The Journal of Neuroscience, 31(7), 2607–2614.
Lanerolle, N. C., Lee, T.-S., & Spencer, D. D. (2010). Astrocytes and epilepsy. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 7, 424–438.
Larrosa, B., Pastor, J., Lopez-Aguado, L., & Herreras, O. (2006). Role for glutamate and glia in the fast network oscillations preceding spreading depression. Neuroscience, 141, 1057–1068.
Lehnertz, K., Bialonski, S., Horstmann, M. T., Krug, D., Rothkegel, A., Staniek, M., et al. (2009). Synchronization phenomena in human epileptic brain networks. Journal of Neuroscience Methods, 183, 42–48.
Liley, D. T. J., Cadusch, P. J., & Dafilis, M. P. (2002). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67–113.
Lopes da Silva, F. H. (2008). The impact of EEG/MEG signal processing and modeling in the diagnostic and management of epilepsy. IEEE Review of Biomedical Engineering, 1, 143–156.
Lopes da Silva, F. H., Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003). Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia, 44(12), 72–83.
Nadkarni, S., & Jung, P. (2004). Dressed neurons: modeling neural-glial interactions. Physical Biology, 1, 35–41.
Nadkarni, S., & Jung, P. (2007). Modeling synaptic transmission of the tripartite synapse. Physical Biology, 4, 1–9.
Newman, E. A. (2003). New roles for astrocytes: regulation of synaptic transmission. Trends in Neurosciences, 26, 536–542.
Pluchino, S., & Martino, G. (2008). The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. Journal of the Neurological Sciences, 265, 105–110.
Postnov, D. E., Ryazanova, L. S., & Sosnovtseva, O. V. (2007). Functional modeling of neural-glial interaction. BioSystems, 89, 84–91.
Postnov, D. E., Koreshkov, R. N., Brazhe, N. A., Brazhe, A. R., & Sosnovtseva, O. V. (2009). Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. Journal of Biological Physics, 35, 425–445.
Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L., & Siciliano, G. (2009). Astrocyte-neuron interactions in neurological disorders. Journal of Biological Physics, 35, 317–336.
Rogawski, M. A. (2005). Astrocytes get in the act in epilepsy. Nature Medicine, 11, 919–920.
Santello, M., & Volterra, A. (2009). Synaptic modulation by astrocytes via Ca2+−dependent glutamate release. Neuroscience, 158, 253–259.
Seifert, G., Carmignoto, G., & Steinhäuser, C. (2010). Astrocyte dysfunction in epilepsy. Brain Research Reviews, 63, 212–221.
Silchenko, A. N., & Tass, P. A. (2008). Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biological Cybernetics, 98, 61–74.
Steriade, M., & Contreras, D. (1998). Spike-wave complexes and fast components of cortically generated seizures. Role of neocortex and thalamus. Journal of Neurophysiology, 80, 1439–1455.
Suffczynski, P., Kalitzin, S., & Lopes Da Silva, F. H. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126, 467–484.
Suffczynski, P., Wendling, F., Bellanger, J. J., & Lopes Da Silva, F. H. (2006). Some insights into computational models of (patho) physiological brain activity. Proceedings of the IEEE, 94, 784–804.
Suffczynski, P., Kalitzin, S., & Lopes da Silva, F. H. (2008). A neuronal network model of corticothalamic oscillations: the emergence of epileptiform absence seizures. In I. Soltesz & K. Staley (Eds.), Computational neuroscience in epilepsy (pp. 403–418). Amsterdam: Elsevier.
Tsakalis, K., & Iasemidis, L. D. (2006). Control aspects of a theoretical model for epileptic seizures. International Journal of Bifurcation and Chaos, 16, 2013–2027.
Tsakalis, K., Chakravarthy, N., Sabesan, S., Iasemidis, L. D., & Pardalos, P. M. (2006). A feedback control systems view of epileptic seizures. Cybernetics and Systems Analysis, 42, 483–495.
Ullah, G., Jung, P., & Cornell-Bell, A. H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium, 39, 197–208.
Ullah, G., Cressman, J. R., Jr., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of Computational Neuroscience, 26, 171–183.
Volman, V., Ben-Jacob, E., & Levine, H. (2007). The astrocyte as a gatekeeper of synaptic information transfer. Neural Computation, 19:303–326.
Volterra, A., & Steinhäuser, C. (2004). Glial modulation of synaptic transmission in the hippocampus. GLIA, 47, 249–257.
Wendling, F., Hernandez, A., Bellanger, J. J., Chauvel, P., & Bartolomei, F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of Clinical Neurophysiology, 22, 343–356.
Wetherington, J., Serrano, G., & Dingledine, R. (2008). Astrocytes in the epileptic brain. Neuron, 58, 168–178.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Catherine E. Carr
Rights and permissions
About this article
Cite this article
Amiri, M., Bahrami, F. & Janahmadi, M. Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33, 285–299 (2012). https://doi.org/10.1007/s10827-012-0386-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-012-0386-8