Abstract
Injury to neural tissue renders voltage-gated Na+ (Nav) channels leaky. Even mild axonal trauma initiates Na+ -loading, leading to secondary Ca2+-loading and white matter degeneration. The nodal isoform is Nav1.6 and for Nav1.6-expressing HEK-cells, traumatic whole cell stretch causes an immediate tetrodotoxin-sensitive Na+-leak. In stretch-damaged oocyte patches, Nav1.6 current undergoes damage-intensity dependent hyperpolarizing- (left-) shifts, but whether left-shift underlies injured-axon Nav-leak is uncertain. Nav1.6 inactivation (availability) is kinetically limited by (coupled to) Nav activation, yielding coupled left-shift (CLS) of the two processes: CLS should move the steady-state Nav1.6 “window conductance” closer to typical firing thresholds. Here we simulated excitability and ion homeostasis in free-running nodes of Ranvier to assess if hallmark injured-axon behaviors—Na+-loading, ectopic excitation, propagation block—would occur with Nav-CLS. Intact/traumatized axolemma ratios were varied, and for some simulations Na/K pumps were included, with varied in/outside volumes. We simulated saltatory propagation with one mid-axon node variously traumatized. While dissipating the [Na+] gradient and hyperactivating the Na/K pump, Nav-CLS generated neuropathic pain-like ectopic bursts. Depending on CLS magnitude, fraction of Nav channels affected, and pump intensity, tonic or burst firing or nodal inexcitability occurred, with [Na+] and [K+] fluctuating. Severe CLS-induced inexcitability did not preclude Na+-loading; in fact, the steady-state Na+-leaks elicited large pump currents. At a mid-axon node, mild CLS perturbed normal anterograde propagation, and severe CLS blocked saltatory propagation. These results suggest that in damaged excitable cells, Nav-CLS could initiate cellular deterioration with attendant hyper- or hypo-excitability. Healthy-cell versions of Nav-CLS, however, could contribute to physiological rhythmic firing.











Similar content being viewed by others
References
Allen, D. G., Zhang, B. T., & Whitehead, N. P. (2010). Stretch-induced membrane damage in muscle: comparison of wild-type and mdx mice. Advances in Experimental Medicine and Biology, 682, 297–313.
Bailes, J. E., & Mills, J. D. (2010). Docosahexaenoic acid (DHA) reduces traumatic axonal injury in a rodent dead injury model. Journal of Neurotrauma, 27, 1617–1624.
Banderali, U., Juranka, P. F., Clark, R. B., Giles, W. R., & Morris, C. E. (2010). Impaired stretch modulation in potentially lethal cardiac sodium channel mutants. Channels (Austin, Texas), 4, 12–21.
Beyder, A., Rae, J. L., Bernard, C., Strege, P. R., Sachs, F., & Farrugia, G. (2010). Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. The Journal of Physiology, 588, 4969–4985.
Blyth, B. J., & Bazarian, J. J. (2010). Traumatic alterations in consciousness: traumatic brain injury. Emergency Medicine Clinics of North America, 28, 571–594.
Börjesson, S. I., Parkkari, T., Hammarström, S., & Elinder, F. (2010). Electrostatic tuning of cellular excitability. Biophysical Journal, 98, 396–403.
Bostock, H., & Rothwell, J. C. (1997). Latent addition in motor and sensory fibres of human peripheral nerve. The Journal of Physiology, 498, 277–294.
Bruno, M. J., Koeppe, R. E., & Andersen, O. S. (2007). Docosahexaenoic acid alters bilayer elastic properties. Proceedings of the National Academy of Sciences of the United States of America, 104, 9638–9643.
Burbidge, S. A., Dale, T. J., Powell, A. J., Whitaker, W. R., Xie, X. M., Romanos, M. A., & Clare, J. J. (2002). Molecular cloning, distribution and functional analysis of the NaV1.6. Voltage-gated sodium channel from human brain. Molecular Brain Research, 103, 80–90.
Charras, G., & Paluch, E. (2008). Blebs lead the way: how to migrate without lamellipodia. Nature Reviews Molecular Cell Biology, 9, 730–736.
Coggan, J. S., Prescott, S. A., Bartol, T. M., & Sejnowski, T. J. (2010). Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proceedings of the National Academy of Sciences of the United States of America, 107, 20602–20609.
Coggan, J. S., Ocker, G. K., Sejnowski, T. J., & Prescott, S. A. (2011). Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. Journal of Neural Engineering, 8, 065002.
Devor, M. (2009). Ectopic discharge in Aβ afferents as a source of neuropathic pain. Experimental Brain Research, 196, 115–128.
Di, X., Goforth, P. B., Bullock, R., Ellis, E., & Satin, L. (2000). Mechanical injury alters volume activated ion channels in cortical astrocytes. Acta Neurochirurgica. Supplement, 76, 379–383.
Draeger, A., Monastyrskaya, K., & Babiychuk, E. B. (2011). Plasma membrane repair and cellular damage control: the annexin survival kit. Biochemical Pharmacology, 81, 703–712.
Duflocq, A., Chareyre, F., Giovannini, M., Couraud, F., & Davenne, M. (2011). Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B. BMC Biology, 9, 66–84.
Finol-Urdaneta, R. K., McArthur, J. R., Juranka, P. F., French, R. J., & Morris, C. E. (2010). Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents. Biophysical Journal, 98, 762–772.
Fried, K., Sessle, B. J., & Devor, M. (2011). The paradox of pain from tooth pulp: Low-threshold “algoneurons”? Pain, 152, 2685–2689.
Gu, C., & Gu, Y. (2011). Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. Journal of Biological Chemistry, 286, 25835–25847.
Hirn, C., Shapovalov, G., Petermann, O., Roulet, E., & Ruegg, U. T. (2008). Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death. Journal of General Physiology, 132, 199–208.
Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. The Journal of Physiology, 107, 165–181.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.
Hogg, R. R., Lewis, R. J., & Adams, D. J. (2002). Ciguatoxin-induced oscillations in membrane potential and firing in rat parasympathetic neurons. European Journal of Neuroscience, 16, 242–248.
Huff, T. B., Shi, Y., Sun, W., Wu, W., Shi, R., & Cheng, J. X. (2011). Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PLoS One, 6(3), e17176.
Isose, S., Misawa, S., Sakurai, K., Kanai, K., Shibuya, K., Sekiguchi, Y., Nasu, S., Noto, Y., Fujimaki, Y., Yokote, K., & Kuwabara, S. (2010). Mexiletine suppresses nodal persistent sodium currents in sensory axons of patients with neuropathic pain. Clinical Neurophysiology, 121, 719–724.
Izhikevich, E. M. (2001). Resonate-and-fire neurons. Neural Network, 14, 883–894.
Kager, H., Wadman, W. J., & Somjen, G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.
Kimelberg, H. K. (2004). Volume activated anion channel and astrocytic cellular edema in traumatic brain injury and stroke. Advances in Experimental Medicine and Biology, 559, 157–167.
Kole, M. H. (2011). First node of Ranvier facilitates high-frequency burst encoding. Neuron, 71, 671–682.
Kovalsky, Y., Amir, R., & Devor, M. (2009). Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. Journal of Neurophysiology, 102, 1430–1442.
Krepkiy, D., Mihailescu, M., Freites, J. A., Schow, E., Worcester, D., Gawrisch, K., Tobias, D. J., White, S. H., & Swartz, K. (2009). Structure and hydration of membranes embedded with voltage-sensing domains. Nature, 462, 473–479.
Krishnan, G. P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31, 8870–8882.
Kuwabara, S., Misawa, S., Tamura, N., Nakata, M., Kanai, K., Sawai, S., Ogawara, K., & Hattori, T. (2006). Latent addition in human motor and sensory axons: different site-dependent changes across the carpal tunnel related to persistent Na+ currents. Clinical Neurophysiology, 117, 810–814.
Läuger, P. (1991). Electrogenic ion pumps. Distinguished lecture series of the Society of General Physiologists. Vol. 5. Sinauer Assoc., Sunderland (Mass).
Lemieux, D. R., Roberge, F. A., & Joly, D. (1992). Modeling the dynamic features of the electrogenic Na, K pump of cardiac cells. Journal of Theoretical Biology, 154, 335–338.
Lenkey, N., Karoly, R., Epresi, N., Vizi, E., & Mike, A. (2011). Binding of sodium channel inhibitors to hyperpolarized and depolarized conformations of the channel. Neuropharmacology, 60, 191–200.
Li, G. R., Sun, H. Y., Zhang, X. H., Cheng, L. C., Chiu, S. W., Tse, H. F., & Lau, C. P. (2009). Omega-3 polyunsaturated fatty acids inhibit transient outward and ultrarapid delayed rectifier K+ currents and Na+ current in human atrial myocytes. Cardiovascular Research, 81, 286–293.
Lorincz, A., & Nusser, Z. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science, 328, 906–909.
Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S., & Avoli, M. (2010). Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurology, 9, 413–424.
Marques, A., & Guerri, C. (1988). Effects of ethanol on rat brain (Na+K)ATPase from native and delipidized membranes. Biochemical Pharmacology, 15, 601–606.
Massimini, M., Boly, M., Casali, A., Rosanova, M., & Tononi, G. (2009). A perturbational approach for evaluating the brain’s capacity for consciousness. Progress in Brain Research, 177, 201–214.
Maxwell, W. L. (1996). Histopathological changes at central nodes of Ranvier after stretch-injury. Microscopy Research and Technique, 34, 522–535.
McGinn, M. J., Kelley, B. J., Akinyi, L., Oli, M. W., Liu, M. C., Hayes, R. L., Wang, K. K. W., & Povlishock, J. T. (2009). Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. Journal of Neuropathology and Experimental Neurology, 68, 241–249.
Misawa, S., Sakurai, K., Shibuya, K., Isose, S., Kanai, K., Ogino, J., Ishikawa, K., & Kuwabara, S. (2009). Neuropathic pain is associated with increased nodal persistent Na+ currents in human diabetic neuropathy. Journal of the Peripheral Nervous System, 14, 279–284.
Monnerie, H., Tang-Schomer, M. D., Iwata, A., Smith, D. H., Kim, H. A., & Le Roux, P. D. (2010). Dendritic alterations after dynamic axonal stretch injury in vitro. Experimental Neurology, 224, 415–423.
Morris, C. E. (2011a). Why are so many ion channels mechanosensitive. In N. Sperelakis (Ed.), Cell physiology source book (pp. 493–505), 4th Edition. Elsevier.
Morris, C. E. (2011b). Voltage-gated channel mechanosensitivity. Fact or friction? Frontiers in Physiology, 2, 25.
Morris, C. E. (2011c). Pacemaker, potassium, calcium, sodium: stretch modulation of the voltage-gated channels. In P. Kohl, F. Sachs, M. R. Franz, editors. Cardiac mechano-electric coupling and arrhythmias (pp. 42–49), 2nd Edition. Oxford University Press.
Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.
Morris, C. E., Boucher, P-A., Joós, B. (2012). Left-shifted Nav channels in trauma-damaged bilayer: primary targets for neuroprotective Nav antagonists? Frontiers in Pharmacology 3, 19.
Ochab-Marcinek, A., Schmid, G., Goychuk, I., & Hänggi, P. (2009). Noise-assisted spike propagation in myelinated neurons. Physical Review E, 79, 11904.
Prescott, S. A., De Koninck, Y., & Sejnowski, T. J. (2008). Biophysical basis for three distinct dynamical mechanisms of initiation. PLoS Computational Biology, 4, e1000198.
Ritter, A. M., Martin, W. J., & Thorneloe, K. S. (2009). The voltage-gated sodium channel Nav1.9 is required for inflammation-based urinary bladder dysfunction. Neuroscience Letters, 452, 28–32.
Ross, S. T., & Soltesz, I. (2000). Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na(+)/K(+)-ATPase. Journal of Neurophysiology, 83, 2916–2930.
Schafer, D. S., Jha, S., Liu, F., Akella, T., McCullough, L. D., & Rasband, M. N. (2009). Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. Journal of Neuroscience, 29, 13242–13254.
Schmidt, D., & MacKinnon, R. (2008). Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proceedings of the National Academy of Sciences of the United States of America, 105, 19276–19281.
Seifert, G., Huttmann, K., Binder, D. K., Hartmann, C., Wyczynski, A., Neusch, C., & Steinhauser, C. (2009). Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. Journal of Neuroscience, 29, 7474–7488.
Shi, R., & Sun, W. (2011). Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons. Neuroscience Bulletin, 27, 36–44.
Smith, D. H., Meaney, D. F., & Shull, W. H. (2003). Diffuse axonal injury in head trauma. The Journal of Head Trauma Rehabilitation, 18, 307–316.
Smit, J. E., Hanekom, T., & Hanekom, J. J. (2009). Modelled temperature-dependent excitability behaviour of a single Ranvier node for a human peripheral sensory nerve fibre. Biological Cybernetics, 100, 49–58.
Stys, P. K. (2004). White matter injury mechanisms. Current Molecular Medicine, 4, 113–130.
Stys, P. K., Sontheimer, H., Ransom, B. R., & Waxman, S. G. (1993). Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proceedings of the National Academy of Sciences of the United States of America, 90, 6976–6980.
Sun, G. C., Werkman, T. R., & Wadman, W. J. (2006). Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy. Acta Pharmacologica Sinica, 27, 1537–1546.
Tabarean, I. V., Juranka, P., & Morris, C. E. (1999). Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophysical Journal, 77, 758–774.
Taddese, A., & Bean, B. P. (2002). Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron, 33, 587–600.
Thomas, E. A., Hawkins, R. J., Richards, K. L., Xu, R., Gazina, E. V., & Petrou, S. (2009). Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Annals of Neurology, 66, 219–226.
Tokuno, H. A., Kocsis, J. D., & Waxman, S. G. (2003). Noninactivating, tetrodotoxin sensitive Na+ conductance in peripheral axons. Muscle & Nerve, 28, 212–217.
Viano, D. C., Casson, I. R., Pellman, E. J., Bir, C. A., Zhang, L., Sherman, D. C., & Boitano, M. A. (2005). Concussion in professional football: comparison with boxing head impacts–part 10. Neurosurgery, 57, 1154–1172.
Volman, V., Bazhenov, M., & Sejnowski, T. J. (2011). Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proceedings of the National Academy of Sciences of the United States of America, 108, 15402–15407.
Vucic, S., & Kiernan, M. C. (2010). Upregulation of persistent sodium conductances in familial ALS. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 222–227.
Wan, X., Juranka, P., & Morris, C. E. (1999). Activation of mechanosensitive currents in traumatized membrane. American Journal of Physiology, 276, C318–C327.
Wang, J. A., Lin, W., Morris, T., Banderali, U., Juranka, P. F., & Morris, C. E. (2009). Membrane trauma and Na+ leak from Nav1.6 channels. American Journal of Physiology Cell Physiology, 297, C823–C834.
Weiss, S., Benoist, D., White, E., Teng, W., & Saint, D. A. (2010). Riluzole protects against cardiac ischaemia and reperfusion damage via block of the persistent sodium current. British Journal of Pharmacology, 160, 1072–1082.
Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. Journal of Neuroscience, 21, 1923–1930.
Yuen, T. J., Browne, K. D., Iwata, A., & Smith, D. H. (2009). Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. Journal of Neuroscience Research, 87, 3620–3625.
Acknowledgements
We thank André Longtin and Na Yu for helpful discussions during the preparation of this manuscript. Our research was supported by funds from NSERC, HSF and CIHR.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Action Editor: T. Sejnowski
Rights and permissions
About this article
Cite this article
Boucher, PA., Joós, B. & Morris, C.E. Coupled left-shift of Nav channels: modeling the Na+-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 33, 301–319 (2012). https://doi.org/10.1007/s10827-012-0387-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-012-0387-7