Abstract
Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.









Similar content being viewed by others
Abbreviations
- AD:
-
Active dendrite
- AHP:
-
Afterhyperpolarization
- BT:
-
Basal torque
- Ca++ :
-
Calcium
- CV:
-
Coefficient of variation
- EMG:
-
Electromyogram
- EPSP:
-
Excitatory post-synaptic potential
- ET:
-
Extra torque
- IPSP:
-
Inhibitory post-synaptic potential
- K+ :
-
Potassium
- LG:
-
Lateral Gastrocnemius
- MG:
-
Medial Gastrocnemius
- MN:
-
Motoneuron
- MT:
-
Maximum torque
- MU:
-
Motor unit
- Na+ :
-
Sodium
- PD:
-
Passive dendrite
- PIC:
-
Persistent inward current
- SOL:
-
Soleus muscle
- TA:
-
Tibialis anterior
- TS:
-
Triceps Surae
References
Bennett, D. J., Hultborn, H., Fedirchuk, B., & Gorassini, M. (1998). Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. Journal of Neurophysiology, 80(4), 2023–2037.
Bergquist, A. J., Clair, J. M., & Collins, D. F. (2011). Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae. Journal of Applied Physiology, 110(3), 627–637.
Binder, M. D. (2002). Integration of synaptic and intrinsic dendritic currents in cat spinal motoneurons. Brain Research Reviews, 40(1–3), 1–8.
Binder, M. D., & Powers, R. K. (1999). Synaptic integration in spinal motoneurones. Journal of Physiology, Paris, 93(1–2), 71–79.
Cisi, R. R. L., & Kohn, A. F. (2008). Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture. Journal of Computational Neuroscience, 25(3), 520–542. doi:10.1007/s10827-008-0092-8.
Collins, D. F. (2007). Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exercise and Sport Sciences Reviews, 35(3), 102–109. doi:10.1097/jes.0b013e3180a0321b.
Collins, D. F., Bergquist, A. J. (2011). “Extra torque” during electrically evoked contractions in humans. J Neurosci eLetters. Available via http://www.jneurosci.org/content/31/15/5579.long#responses. Accessed 01 August 2011.
Collins, D. F., Burke, D., & Gandevia, S. C. (2001). Large involuntary forces consistent with plateau-like behavior of human motoneurons. Journal of Neuroscience, 21(11), 4059–4065.
Collins, D. F., Burke, D., & Gandevia, S. C. (2002). Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol-London, 538(1), 289–301.
Dean, J. C., Yates, L. M., & Collins, D. F. (2007). Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. Journal of Applied Physiology, 103(1), 170–176. doi:10.1152/japplphysiol.01361.2006.
Destexhe, A. (1997). Conductance-based integrate-and-fire models. Neural Computation, 9(3), 503–514.
Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation, 6(1), 14–18.
ElBasiouny, S. M., Schuster, J. E., & Heckman, C. J. (2010). Persistent inward currents in spinal motoneurons: Important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis. Clinical Neurophysiology, 121(10), 1669–1679. doi:10.1016/j.clinph.2009.12.041.
Elias, L. A., Kohn, A. F. (2010). Single neuron and network models in force control. In: 9th Neural Coding Workshop, Limassol, Cyprus, pp 31–32.
Finkel, A. S., & Redman, S. J. (1983). The synaptic current evoked in cat spinal motoneurones by impulses in single group-1a axons. J Physiol-London, 342, 615–632.
Fleshman, J. W., Segev, I., & Burke, R. E. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal-cord. Journal of Neurophysiology, 60(1), 60–85.
Frigon, A., Thompson, C. K., Johnson, M. D., Manuel, M., Hornby, T. G., & Heckman, C. J. (2011). Extra forces evoked during electrical stimulation of the muscle or its nerve are generated and modulated by a length-dependent intrinsic property of muscle in humans and cats. Journal of Neuroscience, 31(15), 5579–5588. doi:10.1523/JNEUROSCI.6641-10.2011.
Fuglevand, A. J., Winter, D. A., & Patla, A. E. (1993). Models of recruitment and rate coding organization in motor-unit pools. Journal of Neurophysiology, 70(6), 2470–2488.
Fuglevand, A. J., Dutoit, A. P., Johns, R. K., & Keen, D. A. (2006). Evaluation of plateau-potential-mediated ‘warm up’ in human motor units. J Physiol-London, 571(Pt 3), 683–693.
Gorassini, M. A., Bennett, D. J., & Yang, J. F. (1998). Self-sustained firing of human motor units. Neuroscience Letters, 247(1), 13–16.
Heckman, C. J. (1994). Computer-simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. Journal of Neurophysiology, 71(5), 1727–1739.
Heckman, C. J., & Lee, R. H. (1999). Synaptic integration in bistable motoneurons. Peripheral and Spinal Mechanisms in the Neural Control of Movement, 123, 49–56.
Heckman, C. J., Gorassini, M. A., & Bennett, D. J. (2005). Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle & Nerve, 31(2), 135–156. doi:10.1002/Mus.20261.
Heckman, C. J., Mottram, C., Quinlan, K., Theiss, R., & Schuster, J. (2009). Motoneuron excitability: The importance of neuromodulatory inputs. Clinical Neurophysiology, 120(12), 2040–2054. doi:10.1016/j.clinph.2009.08.009.
Hounsgaard, J., Hultborn, H., Jespersen, B., & Kiehn, O. (1988). Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol-London, 405, 345–367.
Hyngstrom, A. S., Johnson, M. D., Miller, J. F., & Heckman, C. J. (2007). Intrinsic electrical properties of spinal motoneurons vary with joint angle. Nature Neuroscience, 10(3), 363–369. doi:10.1038/Nn1852.
Hyngstrom, A. S., Johnson, M. D., & Heckman, C. J. (2008). Summation of excitatory and inhibitory synaptic inputs by motoneurons with highly active dendrites. Journal of Neurophysiology, 99(4), 1643–1652. doi:10.1152/jn.01253.2007.
Jacobs, B. L., & Fornal, C. A. (1997). Serotonin and motor activity. Current Opinion in Neurobiology, 7(6), 820–825.
Jacobs, B. L., Martin-Cora, F. J., & Fornal, C. A. (2002). Activity of medullary serotonergic neurons in freely moving animals. Brain Research Reviews, 40(1–3), 45–52.
Johnson, M. D., & Heckman, C. J. (2010). Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord. Ann Ny Acad Sci, 1198, 35–41. doi:10.1111/j.1749-6632.2010.05430.x.
Kiehn, O., & Eken, T. (1998). Functional role of plateau potentials in vertebrate motor neurons. Current Opinion in Neurobiology, 8(6), 746–752.
Klakowicz, P. M., Baldwin, E. R. L., & Collins, D. F. (2006). Contribution of M-waves and H-reflexes to contractions evoked by tetanic nerve stimulation in humans. Journal of Neurophysiology, 96(3), 1293–1302. doi:10.1152/jn.00765.2005.
Kuo, J. J., Lee, R. H., Johnson, M. D., Heckman, H. M., & Heckman, C. J. (2003). Active dendritic integration of inhibitory synaptic inputs in vivo. Journal of Neurophysiology, 90(6), 3617–3624. doi:10.1152/jn.00521.2003.
Lee, R. H., & Heckman, C. J. (1996). Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. Journal of Neurophysiology, 76(3), 2107–2110.
Lee, R. H., & Heckman, C. J. (1998a). Bistability in spinal motoneurons in vivo: Systematic variations in persistent inward currents. Journal of Neurophysiology, 80(2), 583–593.
Lee, R. H., & Heckman, C. J. (1998b). Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. Journal of Neurophysiology, 80(2), 572–582.
Lee, R. H., & Heckman, C. J. (1999). Paradoxical effect of QX-314 on persistent inward currents and bistable behavior in spinal motoneurons in vivo. Journal of Neurophysiology, 82(5), 2518–2527.
Lee, R. H., & Heckman, C. J. (2000). Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. Journal of Neuroscience, 20(17), 6734–6740.
Li, Y. R., Gorassini, M. A., & Bennett, D. J. (2004). Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats. Journal of Neurophysiology, 91(2), 767–783. doi:10.1152/jn.00788.2003.
Lloyd, D. P. (1949). Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. Journal of General Physiology, 33(2), 147–170.
Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8(3), 501–509.
Magalhaes, F. H., & Kohn, A. F. (2010). Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles. Journal of Neuroengineering and Rehabilitation, 7, 26. doi:10.1186/1743-0003-7-26.
Menegaldo, L. L., de Toledo, F. A., & Weber, H. I. (2004). Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. Journal of Biomechanics, 37(9), 1447–1453. doi:10.1016/j.jbiomech.2003.12.017.
Nickolls, P., Collins, D. F., Gorman, R. B., Burke, D., & Gandevia, S. C. (2004). Forces consistent with plateau-like behaviour of spinal neurons evoked in patients with spinal cord injuries. Brain, 127, 660–670. doi:10.1093/Brain/Awh073.
Schwindt, P. C., & Crill, W. E. (1980a). Properties of a persistent inward current in normal and TEA-injected moto-neurons. Journal of Neurophysiology, 43(6), 1700–1724.
Schwindt, P. C., & Crill, W. E. (1980b). Role of a persistent inward current in moto-neuron bursting during spinal seizures. Journal of Neurophysiology, 43(5), 1296–1318.
Stuart, G. J., & Redman, S. J. (1990). Voltage dependence of Ia reciprocal inhibitory currents in cat spinal motoneurons. J Physiol-London, 420, 111–125.
Taylor, A. M., & Enoka, R. M. (2004). Quantification of the factors that influence discharge correlation in model motor neurons. Journal of Neurophysiology, 91(2), 796–814. doi:10.1152/jn.00802.2003.
Williams, E. R., & Baker, S. N. (2009). Circuits generating corticomuscular coherence investigated using a biophysically based computational model. I. Descending systems. J Neurophysiol, 101(1), 31–41. doi:10.1152/jn.90362.2008.
Zengel, J. E., Reid, S. A., Sypert, G. W., & Munson, J. B. (1985). Membrane electrical-properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology, 53(5), 1323–1344.
Zhou, P., & Rymer, W. Z. (2004). MUAP number estimates in surface EMG: template-matching methods and their performance boundaries. Ann Biom Eng, 32(7), 1007–1015.
Acknowledgments
This work was funded by FAPESP (State of São Paulo Funding Agency) and CNPq (The National Council for Scientific and Technological Development). L.A. Elias and V.M. Chaud hold scholarships from FAPESP (#2009/15802-0) and CNPq (#132776/2011-1), respectively. The authors are grateful to Dr. F.H. Magalhães for his insights and valuable discussions.
Conflict of interest statement
The authors declare that there is no conflict of interest with any financial organization regarding the material discussed in this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Eberhard Fetz
All authors contributed equally to this work.
Appendix: Geometric and electrotonic properties of the motoneuron pool
Appendix: Geometric and electrotonic properties of the motoneuron pool
The passive characteristics of each single MN model (see section 2.1.1) depended on the geometric and electrotonic properties of the cell (Equations A1 to A5), which were based on data from type-specified (i.e., S-, FR-, and FF-type) cat MNs (Fleshman et al. 1988; Zengel et al. 1985). In this study, the parameters varied linearly within each type of MNs (see Table 3), resulting in a piece-wise linear approximation of how these parameters vary along the whole pool. Figure 10 shows an example for the range of rheobase currents adopted in the SOL MN pool. All the parameters were made equal for the different motor nuclei (i.e., SOL, MG, LG, and TA) and the differences between them were only in the numbers of each MU type (Table 4).
Rights and permissions
About this article
Cite this article
Elias, L.A., Chaud, V.M. & Kohn, A.F. Models of passive and active dendrite motoneuron pools and their differences in muscle force control. J Comput Neurosci 33, 515–531 (2012). https://doi.org/10.1007/s10827-012-0398-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-012-0398-4