Skip to main content

Advertisement

Log in

Compensating for synaptic loss in Alzheimer’s disease

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Confirming that synaptic loss is directly related to cognitive deficit in Alzheimer’s disease (AD) has been the focus of many studies. Compensation mechanisms counteract synaptic loss and prevent the catastrophic amnesia induced by synaptic loss via maintaining the activity levels of neural circuits. Here we investigate the interplay between various synaptic degeneration and compensation mechanisms, and abnormal cortical oscillations based on a large-scale network model consisting of 100,000 neurons exhibiting several cortical firing patterns, 8.5 million synapses, short-term plasticity, axonal delays and receptor kinetics. The structure of the model is inspired by the anatomy of the cerebral cortex. The results of the modelling study suggest that cortical oscillations respond differently to compensation mechanisms. Local compensation preserves the baseline activity of theta (5–7 Hz) and alpha (8–12 Hz) oscillations whereas delta (1–4 Hz) and beta (13–30 Hz) oscillations are maintained via global compensation. Applying compensation mechanisms independently shows greater effects than combining both compensation mechanisms in one model and applying them in parallel. Consequently, it can be speculated that enhancing local compensation might recover the neural processes and cognitive functions that are associated with theta and alpha oscillations whereas inducing global compensation might contribute to the repair of neural (cognitive) processes which are associated with delta and beta band activity. Compensation mechanisms may vary across cortical regions and the activation of inappropriate compensation mechanism in a particular region may fail to recover network dynamics and/or induce secondary pathological changes in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abuhassan, K., Coyle, D., & Maguire, L. P. (2012). Investigating the neural correlates of pathological cortical networks in Alzheimer’s disease using heterogeneous neuronal models. IEEE Transactions on Biomedical Engineering, 59, 890–896. doi:10.1109/TBME.2011.2181843.

    Article  PubMed  Google Scholar 

  • Aguado, F., Espinosa-Parrilla, J. F., Carmona, M. A., & Soriano, E. (2002). Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. Journal of Neuroscience, 22, 9430–44.

    CAS  PubMed  Google Scholar 

  • Arendt, T. (2001). Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience, 102, 723–765.

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A., Genové, G., Mäe, M., et al. (2010). Pericytes regulate the blood–brain barrier. Nature, 468, 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Auld, D. S., & Robitaille, R. (2003). Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron, 40, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Babiloni, C., Lizio, R., Vecchio, F., et al. (2010). Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer’s disease: an EEG study. Journal of Alzheimer’s Disease, 22, 1047–64. doi:10.3233/JAD-2010-100798.

    PubMed  Google Scholar 

  • Baker, M., Akrofi, K., Schiffer, R., & Boyle, M. W. O. (2008). EEG Patterns in Mild Cognitive Impairment (MCI) Patients. The Open Neuroimaging Journal, 2, 52–55. doi:10.2174/1874440000802010052.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. (2002). Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States. Journal of Neuroscience, 22, 8691–8704.

    CAS  PubMed  Google Scholar 

  • Bear, M., & Connors, B. (2002). Paradiso M, et al. Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins.

    Google Scholar 

  • Bell, R. D., Winkler, E. A., Singh, I., et al. (2012). Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 485, 512–516.

    Article  CAS  PubMed  Google Scholar 

  • Bertoni-Freddari, C., Fattoretti, P., Casoli, T., et al. (1996). Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Analytical & Quantitative Cytology & Histology, 18, 209–213.

    CAS  Google Scholar 

  • Besthorn, C., Zerfass, R., Geiger-Kabisch, C., et al. (1997). Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalography and Clinical Neurophysiology, 103, 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, B. S., Coyle, D., & Maguire, L. (2011). A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Networks, 24, 631–645.

    Article  PubMed  Google Scholar 

  • Boche, D., & Nicoll, J. A. R. (2010). Are we getting to grips with Alzheimer’s disease at last? Brain, 133, 1297–1299. doi:10.1093/brain/awq099.

    Article  PubMed  Google Scholar 

  • Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity. Berlin: Springer.

    Book  Google Scholar 

  • Brion, J. P. (1998). Neurofibrillary tangles and Alzheimer’s disease. European Neurology, 40, 130–140.

    Article  CAS  PubMed  Google Scholar 

  • Cantero, J. L., Atienza, M., Gomez-Herrero, G., et al. (2009). Functional integrity of thalamocortical circuits differentiates normal aging from mild cognitive impairment. Human brain mapping, 30, 3944–3957. doi:10.1002/hbm.20819.

    Article  PubMed  Google Scholar 

  • Carmeliet, P., & De Strooper, B. (2012). Alzheimer’s disease: A breach in the blood–brain barrier. Nature, 485, 451–452.

    Article  CAS  PubMed  Google Scholar 

  • Coben, L., Danziger, W., & Berg, L. (1983). Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalography and Clinical Neurophysiology, 55, 372–380.

    Article  CAS  PubMed  Google Scholar 

  • Coben, L., Danziger, W., & Storandt, M. (1985). A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. Electroencephalography and Clinical Neurophysiology, 61, 101–112. doi:10.1016/0013-4694(85)91048-X.

    Article  CAS  PubMed  Google Scholar 

  • Dauwels, J., Vialatte, F., & Cichocki, A. (2010a). Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Current Alzheimer research, 7, 487–505.

    Article  CAS  PubMed  Google Scholar 

  • Dauwels, J., Vialatte, F., Musha, T., & Cichocki, A. (2010b). A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage, 49, 668–93. doi:10.1016/j.neuroimage.2009.06.056.

    Article  CAS  PubMed  Google Scholar 

  • Dauwels J, Vialatte F-B, Cichocki A (2011) On the Early Diagnosis of Alzheimer’s Disease from EEG Signals: A Mini-Review. Advances in Cognitive Neurodynamics (II) SE - 106 709–716 LA – English. doi: 10.1007/978-90-481-9695-1_106

  • Davies, C., Mann, D., Sumpter, P., & Yates, P. (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. Journal of Neurological Sciences, 78, 151–164. doi:10.1016/0022-510X(87)90057-8.

    Article  CAS  Google Scholar 

  • de Haan, W., Pijnenburg, Y. A. L., Strijers, R. L. M., et al. (2009). Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neuroscience, 10, 101. doi:10.1186/1471-2202-10-101.

    Article  PubMed Central  PubMed  Google Scholar 

  • de Waal, H., Stam, C. J., Blankenstein, M. A., et al. (2011). EEG abnormalities in early and late onset Alzheimer’s disease: understanding heterogeneity. Journal of Neurology, Neurosurgery, and Psychiatry, 82, 67–71. doi:10.1136/jnnp.2010.216432.

    Article  PubMed  Google Scholar 

  • de Waal, H., Stam, C. J., de Haan, W., et al. (2012). Young Alzheimer patients show distinct regional changes of oscillatory brain dynamics. Neurobiology of Aging, 33(1008), e25–31. doi:10.1016/j.neurobiolaging.2011.10.013.

    PubMed  Google Scholar 

  • Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’s disease as a disconnection syndrome? Neuropsychology Review, 13, 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Diamond, J. S. (2005). Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. Journal of Neuroscience, 25, 2906–16. doi:10.1523/JNEUROSCI.5125-04.2005.

    Article  CAS  PubMed  Google Scholar 

  • Dok-Go, H., Lee, K. H., Kim, H. J., et al. (2003). Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Research, 965, 130–136.

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich, F., Bazhenov, M., & Sejnowski, T. J. (2008). Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. Journal of Neuroscience, 28, 1709–1720. doi:10.1523/JNEUROSCI.4263-07.2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta, A. (2000). Organizing Principles for a Diversity of GABAergic Interneurons and Synapses in the Neocortex. Science, 287, 273–278. doi:10.1126/science.287.5451.273.

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo, M. (1994). Runaway synaptic modification in models of cortex: Implications for Alzheimer’s disease. Neural Networks, 7, 13–40. doi:10.1016/0893-6080(94)90053-1.

    Article  Google Scholar 

  • Hier, D. B., Mangone, C. A., Ganellen, R., et al. (1991). Quantitative measurement of delta activity in Alzheimer’s disease. Clinical EEG (electroencephalography), 22, 178–182.

    Article  CAS  Google Scholar 

  • Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10, 647–658. doi:10.1038/nrn2699.

    Article  CAS  PubMed  Google Scholar 

  • Horn, D., Ruppin, E., Usher, M., & Herrmann, M. (1993). Neural Network Modeling of Memory Deterioration in Alzheimer’s Disease. Neural Computation, 5, 736–749. doi:10.1162/neco.1993.5.5.736.

    Article  Google Scholar 

  • Horn, D., Levy, N., & Ruppin, E. (1996). Neuronal-based synaptic compensation: a computational study in Alzheimer’s disease. Neural computation, 8, 1227–1243.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572. doi:10.1109/TNN.2003.820440.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Computation, 18, 245–282. doi:10.1162/089976606775093882.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14, 933–944. doi:10.1093/cercor/bhh053.

    Article  PubMed  Google Scholar 

  • Jelic, V., Johansson, S. E., Almkvist, O., et al. (2000). Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiology of Aging, 21, 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Jelles, B., Scheltens, P., Van der Flier, W. M., et al. (2008). Global dynamical analysis of the EEG in Alzheimer’s disease: frequency-specific changes of functional interactions. Clinical Neurophysiology, 119, 837–841. doi:10.1016/j.clinph.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, O., Goel, P., Kopell, N., et al. (2005). On the human sensorimotor-cortex beta rhythm: sources and modeling. NeuroImage, 26, 347–355. doi:10.1016/j.neuroimage.2005.02.008.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology, 115, 1490–1505. doi:10.1016/j.clinph.2004.01.001.

    Article  PubMed  Google Scholar 

  • Jin, K., Peel, A. L., Mao, X. O., et al. (2004). Increased hippocampal neurogenesis in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 343–347. doi:10.1073/pnas.2634794100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones, S. R., Pinto, D. J., Kaper, T. J., & Kopell, N. (2000). Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. Journal of computational neuroscience, 9, 271–91.

    Article  CAS  PubMed  Google Scholar 

  • Kirov, S. A., Goddard, C. A., & Harris, K. M. (2004). Age-dependence in the homeostatic upregulation of hippocampal dendritic spine number during blocked synaptic transmission. Neuropharmacology, 47, 640–648. doi:10.1016/j.neuropharm.2004.07.039.

    Article  CAS  PubMed  Google Scholar 

  • Knobloch, M., & Mansuy, I. M. (2008). Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Molecular Neurobiology, 37, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Koenig, T., Lehmann, D., Saito, N., et al. (2001a). Decreased functional connectivity of EEG theta-frequency activity Ève patients with schizophrenia: preliminary results. NeuroReport, 50, 55–60.

    CAS  Google Scholar 

  • Koenig T, Lehmann D, Saito N, et al. (2001b) GFS Software Tool. http://www.puk.unibe.ch/index.php. Accessed 27 Dec 2013

  • Koenig, T., Prichep, L., Dierks, T., et al. (2005). Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 26, 165–171. doi:10.1016/j.neurobiolaging.2004.03.008.

    Article  CAS  PubMed  Google Scholar 

  • Koffie, R. M., Hyman, B. T., & Spires-Jones, T. L. (2011). Alzheimer’s disease: synapses gone cold. Molecular Neurodegeneration, 6, 63.

    Article  PubMed Central  PubMed  Google Scholar 

  • Latham, P. E., Richmond, B. J., Nelson, P. G., & Nirenberg, S. (2000a). Intrinsic dynamics in neuronal networks. I. Theory. Journal of Neurophysiology, 83, 808–827.

    CAS  PubMed  Google Scholar 

  • Latham, P. E., Richmond, B. J., Nirenberg, S., & Nelson, P. G. (2000b). Intrinsic dynamics in neuronal networks. II. experiment. Journal of Neurophysiology, 83, 828–835.

    CAS  PubMed  Google Scholar 

  • Leuba, G., Savioz, A., Vernay, A., et al. (2008). Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. Journal of Alzheimer’s Disease, 15, 139–151.

    CAS  PubMed  Google Scholar 

  • Li, X., Coyle, D., Maguire, L., et al. (2011). Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study. Neuroradiology, 53, 733–748. doi:10.1007/s00234-010-0795-1.

    Article  PubMed  Google Scholar 

  • Lin, S.-C., & Bergles, D. E. (2004). Synaptic signaling between neurons and glia. Glia, 47, 290–8. doi:10.1002/glia.20060.

    Article  PubMed  Google Scholar 

  • Lizio, R., Vecchio, F., Frisoni, G. B., et al. (2011). Electroencephalographic rhythms in Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2011, 927573. doi:10.4061/2011/927573.

    PubMed Central  PubMed  Google Scholar 

  • Markram, H. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 5323–5328. doi:10.1073/pnas.95.9.5323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minati, L., Edginton, T., Bruzzone, M. G., & Giaccone, G. (2009). Current concepts in Alzheimer’s disease: a multidisciplinary review. American Journal of Alzheimer’s Disease and Other Dementias, 24, 95–121. doi:10.1177/1533317508328602.

    Article  PubMed  Google Scholar 

  • Moretti, D. V., Babiloni, C., Binetti, G., et al. (2004). Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clinical Neurophysiology, 115, 299–308.

    Article  PubMed  Google Scholar 

  • Moretti, D. V., Pievani, M., Fracassi, C., et al. (2008). Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment. Journal of Alzheimer’s Disease, 15, 357–372.

    CAS  PubMed  Google Scholar 

  • Mugantseva, E. A., & Podolski, I. Y. (2009). Animal model of Alzheimer’s disease: characteristics of EEG and memory. Central European Journal of Biology, 4, 507–514. doi:10.2478/s11535-009-0054-9.

    Article  CAS  Google Scholar 

  • Nedergaard, M., Rodríguez, J. J., & Verkhratsky, A. (2010). Glial calcium and diseases of the nervous system. Cell calcium, 47, 140–9. doi:10.1016/j.ceca.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y.-M., Che, H.-J., Im, C.-H., et al. (2008). Decreased EEG synchronization and its correlation with symptom severity in Alzheimer’s disease. Neuroscience Research, 62, 112–117. doi:10.1016/j.neures.2008.06.009.

    Article  PubMed  Google Scholar 

  • Penzes, P., Cahill, M. E., Jones, K. A., et al. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 14, 285–293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pimentel-Coelho, P. M., & Rivest, S. (2012). The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. The European Journal of Neuroscience, 35, 1917–1937.

    Article  PubMed  Google Scholar 

  • Pons, A. J., Cantero, J. L., Atienza, M., & Garcia-Ojalvo, J. (2010). Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling. NeuroImage, 52, 848–861.

    Article  CAS  PubMed  Google Scholar 

  • Prichep, L. S., John, E. R., Ferris, S. H., et al. (2006). Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiology of Aging, 27, 471–481. doi:10.1016/j.neurobiolaging.2005.07.021.

    Article  CAS  PubMed  Google Scholar 

  • Pucci, E., Belardinelli, N., Cacchiò, G., et al. (1999). EEG power spectrum differences in early and late onset forms of Alzheimer’s disease. Clinical Neurophysiology, 110, 621–31.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, G., Arnaldi, D., & Picco, A. (2011). Brain functional network in Alzheimer’s disease: diagnostic markers for diagnosis and monitoring. International Journal of Alzheimer’s Disease, 2011, 481903. doi:10.4061/2011/481903.

    PubMed Central  PubMed  Google Scholar 

  • Rowan M (2011) Effects of compensation, connectivity and tau in a computational model of Alzheimer’s Disease. The 2011 International Joint Conference on Neural Networks 543–550. doi: 10.1109/IJCNN.2011.6033268

  • Savioz, A., Leuba, G., Vallet, P. G., & Walzer, C. (2009). Contribution of neural networks to Alzheimer disease’s progression. Brain Research Bulletin, 80, 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Scheff, S. W. (2003). Reactive synaptogenesis in aging and Alzheimer’s disease: lessons learned in the Cotman laboratory. Neurochemical Research, 28, 1625–1630.

    Article  CAS  PubMed  Google Scholar 

  • Scheff, S. W., & Price, D. A. (1993). Synapse loss in the temporal lobe in Alzheimer’s disease. Annals of Neurology, 33, 190–199. doi:10.1002/ana.410330209.

    Article  CAS  PubMed  Google Scholar 

  • Scheff, S. W., DeKosky, S. T., & Price, D. A. (1990). Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiology of Aging, 11, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791. doi:10.1126/science.1074069.

    Article  CAS  PubMed  Google Scholar 

  • Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Molecular Neurodegeneration, 4, 48.

  • Sheffler-Collins, S. I., & Dalva, M. B. (2012). EphBs: an integral link between synaptic function and synaptopathies. Trends in Neurosciences, 35, 293–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman, S. (2006). Thalamus. Scholarpedia, 1, 1583. doi:10.4249/scholarpedia.1583.

    Article  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2001). Exploring the Thalamus. San Diego: Academic.

    Google Scholar 

  • Shi, C., Zheng, D., Wu, F., et al. (2012). The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3β pathway mediates bilobalide-induced reduction in amyloid β-peptide. Neurochemical Research, 37, 298–306. doi:10.1007/s11064-011-0612-1.

    Article  CAS  PubMed  Google Scholar 

  • Small, D. H. (2004). Mechanisms of synaptic homeostasis in Alzheimer’s disease. Current Alzheimer research, 1, 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Spires-Jones, T. L., Stoothoff, W. H., De Calignon, A., et al. (2009). Tau pathophysiology in neurodegeneration: a tangled issue. Trends in Neurosciences, 32, 150–159. doi:10.1016/j.tins.2008.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Stellwagen, D., & Malenka, R. C. (2006). Synaptic scaling mediated by glial TNF-alpha. Nature, 440, 1054–1059. doi:10.1038/nature04671.

    Article  CAS  PubMed  Google Scholar 

  • Tchantchou, F., Lacor, P. N., Cao, Z., et al. (2009). Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. Journal of Alzheimer’s Disease, 18, 787–98. doi:10.3233/JAD-2009-1189.

    CAS  PubMed  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30, 572–580. doi:10.1002/ana.410300410.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., Bazhenov, M., et al. (2000). Origin of Slow Cortical Oscillations in Deafferented Cortical Slabs. Cerebral Cortex, 10, 1185–1199. doi:10.1093/cercor/10.12.1185.

    Article  CAS  PubMed  Google Scholar 

  • Topolnik, L., Steriade, M., & Timofeev, I. (2003). Partial cortical deafferentation promotes development of paroxysmal activity. Cerebral Cortex, 13, 883–93.

    Article  PubMed  Google Scholar 

  • Turrigiano, G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103. doi:10.1146/annurev-neuro-060909-153238.

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano, G. (2012). Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives in Biology, 4, a005736. doi:10.1101/cshperspect.a005736.

    Article  PubMed  Google Scholar 

  • Uylings, H. B. M., & De Brabander, J. M. (2002). Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cognition, 49, 268–276.

    Article  PubMed  Google Scholar 

  • Van der Hiele, K., Vein, A. A., Reijntjes, R. H. A. M., et al. (2007). EEG correlates in the spectrum of cognitive decline. Clinical Neurophysiology, 118, 1931–1939. doi:10.1016/j.clinph.2007.05.070.

    Article  PubMed  Google Scholar 

  • Vlachos, A., Becker, D., Jedlicka, P., et al. (2012). Entorhinal denervation induces homeostatic synaptic scaling of excitatory postsynapses of dentate granule cells in mouse organotypic slice cultures. PloS One, 7, e32883. doi:10.1371/journal.pone.0032883.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wigley, R., Hamilton, N., Nishiyama, A., et al. (2007). Morphological and physiological interactions of NG2-glia with astrocytes and neurons. Journal of Anatomy, 210, 661–70. doi:10.1111/j.1469-7580.2007.00729.x.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama, Y., Higuchi, M., Zhang, B., et al. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron, 53, 337–351.

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Lu B (2012) Synapses and dendritic spines as pathogenic targets in Alzheimer’s disease. Neural Plasticity, 24715.

  • Zlokovic, B. V. (2008). The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron, 57, 178–201.

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic, B. V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nature reviews Neuroscience, 12, 723–738.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This work is supported by the Northern Ireland Department for Education and Learning under the Strengthening the All Island Research Base Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Abuhassan.

Additional information

Action Editor: Jonathan David Victor, MD, PhD

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 777 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abuhassan, K., Coyle, D., Belatreche, A. et al. Compensating for synaptic loss in Alzheimer’s disease. J Comput Neurosci 36, 19–37 (2014). https://doi.org/10.1007/s10827-013-0462-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0462-8

Keywords

Navigation