Skip to main content
Log in

Gap junction permeability modulated by dopamine exerts effects on spatial and temporal correlation of retinal ganglion cells’ firing activities

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Synchronized activities among retinal ganglion cells (RGCs) via gap junctions can be increased by exogenous dopamine (DA). During DA application, single neurons’ firing activities become more synchronized with its adjacent neighbors. One intriguing question is how the enhanced spatial synchronization alters the temporal firing structure of single neurons. In the present study, firing activities of bullfrog’s dimming detectors in response to binary pseudo-random checker-board flickering were recorded via a multi-channel recording system. DA was applied in the retina to modulate synchronized activities between RGCs, and the effect of DA on firing activities of single neurons was examined. It was found that, during application of DA, synchronized activities between single neuron and its neighboring neurons was enhanced. At the meantime, the temporal structures of single neuron spike train changed significantly, and the temporal correlation in single neuron’s response decreased. The pharmacological study results indicated that the activation of D1 receptor might have effects on gap junction permeability between RGCs. Our results suggested that the dopaminergic pathway participated in the modulation of spatial and temporal correlation of RGCs’ firing activities, and may exert critical effects on visual information processing in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CCF:

Cross-correlation function

DA:

Dopamine

ISI:

Inter-spike-interval

MEA:

Micro-electrode array

RGC:

Retinal ganglion cell

SCH:

SCH-23390

SU:

Sulpiride

TCI:

Temporal correlation index

References

  • Baccus, S. A., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909–919.

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield, S. A., & Volgyi, B. (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nature Reviews Neuroscience, 10(7), 495–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–539.

    Article  CAS  PubMed  Google Scholar 

  • Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10(2), 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Callier, S., Snapyan, M., Le Crom, S., Prou, D., Vincent, J. D., & Vernier, P. (2003). Evolution and cell biology of dopamine receptors in vertebrates. Biology of the Cell, 95(7), 489–502.

    Article  CAS  PubMed  Google Scholar 

  • Chander, D., & Chichilnisky, E. J. (2001). Adaptation to temporal contrast in primate and salamander retina. Journal of Neuroscience, 21(24), 9904–9916.

    CAS  PubMed  Google Scholar 

  • Chen, A. H., Zhou, Y., Gong, H. Q., & Liang, P. J. (2004). Firing rates and dynamic correlated activities of ganglion cells both contribute to retinal information processing. Brain Research, 1017(1–2), 13–20. doi:10.1016/j.brainres.2004.04.081.

    Article  CAS  PubMed  Google Scholar 

  • DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.

    CAS  PubMed  Google Scholar 

  • Field, G. D., & Chichilnisky, E. J. (2007). Information processing in the primate retina: Circuitry and coding. Annual Review of Neuroscience, 30, 1–30. doi:10.1146/annurev.neuro.30.051606.094252.

    Article  CAS  PubMed  Google Scholar 

  • Hampson, E. C., Vaney, D. I., & Weiler, R. (1992). Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. Journal of Neuroscience, 12(12), 4911–4922.

    CAS  PubMed  Google Scholar 

  • Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Hu, E. H., Pan, F., Volgyi, B., & Bloomfield, S. A. (2010). Light increases the gap junctional coupling of retinal ganglion cells. The Journal of Physiology, 588(Pt 21), 4145–4163.

    Article  CAS  PubMed  Google Scholar 

  • Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010). Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cogn Neurodyn, 4(3), 179–188. doi:10.1007/s11571-010-9119-8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koch, K., McLean, J., Berry, M., Sterling, P., Balasubramanian, V., & Freed, M. A. (2004). Efficiency of information transmission by retinal ganglion cells. Current Biology, 14(17), 1523–1530. doi:10.1016/j.cub.2004.08.060.

    Article  CAS  PubMed  Google Scholar 

  • Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews Neuroscience, 5(1), 13–23. doi:10.1038/nrn1296.

    Article  CAS  PubMed  Google Scholar 

  • Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24(47), 10731–10740.

    Article  CAS  PubMed  Google Scholar 

  • Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitis, W. H. (1959). What the frog’s eye tells the Frog’s brain. Proceedings of the IRE, 47, 1940–1951.

    Article  Google Scholar 

  • Li, H., Liu, W. Z., & Liang, P. J. (2012). Adaptation-dependent synchronous activity contributes to receptive field size change of bullfrog retinal ganglion cell. PLoS One, 7(3), e34336. doi:10.1371/journal.pone.0034336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lisman, J. E. (1997). Bursts as a unit of neural information: Making unreliable synapses reliable. Trends in Neurosciences, 20(1), 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W. Z., Jing, W., Li, H., Gong, H. Q., & Liang, P. J. (2011a). Spatial and temporal correlations of spike trains in frog retinal ganglion cells. Journal of Computational Neuroscience, 30(3), 543–553. doi:10.1007/s10827-010-0277-9.

    Article  PubMed  Google Scholar 

  • Liu, W. Z., Yan, R. J., Jing, W., Gong, H. Q., & Liang, P. J. (2011b). Spikes with short inter-spike intervals in frog retinal ganglion cells are more correlated with their adjacent neurons’ activites. Protein & Cell, 2, 764–771.

    Article  Google Scholar 

  • Liu, X., Zhou, Y., Gong, H. Q., & Liang, P. J. (2007). Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells. Brain Research, 1177, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Meister, M., Lagnado, L., & Baylor, D. A. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W., Koch, C., Wessel, R., & Gabbiani, F. (1998). Feature extraction by burst-like spike patterns in multiple sensory maps. Journal of Neuroscience, 18(6), 2283–2300.

    CAS  PubMed  Google Scholar 

  • Mills, S. L., Xia, X. B., Hoshi, H., Firth, S. I., Rice, M. E., Frishman, L. J., et al. (2007). Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network. Visual Neuroscience, 24(4), 593–608.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reid, R. C., Victor, J. D., & Shapley, R. M. (1997). The use of m-sequences in the analysis of visual neurons: Linear receptive field properties. Visual Neuroscience, 14(6), 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  • Reinagel, P., Godwin, D., Sherman, S. M., & Koch, C. (1999). Encoding of visual information by LGN bursts. Journal of Neurophysiology, 81(5), 2558–2569.

    CAS  PubMed  Google Scholar 

  • Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. Journal of Neuroscience, 20(14), 5392–5400.

    CAS  PubMed  Google Scholar 

  • Ribelayga, C., Cao, Y., & Mangel, S. C. (2008). The circadian clock in the retina controls rod-cone coupling. Neuron, 59(5), 790–801.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37(3), 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Strong, S. P., de Ruyter van Steveninck, R. R., Bialek, W., & Koberle, R. (1998). On the application of information theory to neural spike trains. Pac Symp Biocomput, 621–632.

  • Swadlow, H. A., & Gusev, A. G. (2001). The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nature Neuroscience, 4(4), 402–408. doi:10.1038/86054.

    Article  CAS  PubMed  Google Scholar 

  • Teich, M. C., Turcott, R. G., & Siegel, R. M. (1996). Temporal correlation in cat striate-cortex neural spike trains. Engineering in Medicine and Biology Magazine, IEEE, 15(5), 79–87.

    Article  Google Scholar 

  • Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82(6), 3527–3540.

    CAS  PubMed  Google Scholar 

  • Wang, G. L., Zhou, Y., Chen, A. H., Zhang, P. M., & Liang, P. J. (2006). A robust method for spike sorting with automatic overlap decomposition. IEEE Transactions on Biomedical Engineering, 53(6), 1195–1198. doi:10.1109/TBME.2006.873397.

    Article  PubMed  Google Scholar 

  • Witkovsky, P. (2004). Dopamine and retinal function. Documenta Ophthalmologica, 108(1), 17–40.

    Article  PubMed  Google Scholar 

  • Witkovsky, P., & Dearry, A. (1991). Functional roles of dopamine in the vertebrate retina. Progress in Retinal Research, 11, 247–292.

    Article  CAS  Google Scholar 

  • Witkovsky, P., Nicholson, C., Rice, M. E., Bohmaker, K., & Meller, E. (1993). Extracellular dopamine concentration in the retina of the clawed frog, xenopus laevis. Proceedings of the National Academy of Sciences of the United States of America, 90(12), 5667–5671.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, P. M., Wu, J. Y., Zhou, Y., Liang, P. J., & Yuan, J. Q. (2004). Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. Journal of Neuroscience Methods, 135(1–2), 55–65. doi:10.1016/j.jneumeth.2003.12.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the State Key Basic Research and Development Plan (No.2005CB724301) and National Foundations of Natural Science of China (No.61075108, No.60775034).

Conflicts of interest

No conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu-Ming Zhang.

Additional information

Action Editor: Barry Richmond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, JY., Li, H., Gong, HQ. et al. Gap junction permeability modulated by dopamine exerts effects on spatial and temporal correlation of retinal ganglion cells’ firing activities. J Comput Neurosci 36, 67–79 (2014). https://doi.org/10.1007/s10827-013-0469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0469-1

Keywords

Navigation