Skip to main content
Log in

Model-based prediction of fusimotor activity and its effect on muscle spindle activity during voluntary wrist movements

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Muscle spindles provide critical information about movement position and velocity. They have been shown to act as stretch receptors in passive muscle, however, during active movements their behavior is less clear. In particular, spindle responses have been shown to be out-of-phase or phase advanced with respect to their expected muscle length-sensitivity. Whether this apparent discrepancy of spindle responses between passive and active movements is due to fusimotor (γ-drive) remains unresolved, since the activity of fusimotor neurons during voluntary non-locomotor movements are largely unknown. We developed a computational model to predict fusimotor activity and to investigate whether fusimotor activity could explain the empirically observed phase advance of spindle responses. The model links a biomechanical wrist model to length- and γ-drive-dependent transfer functions of type Ia and type II muscle spindle activity. Our simulations of two wrist-movement tasks suggest that (i) experimentally observed type Ia and type II activity profiles can to a large part be explained by appropriate, i.e. strongly modulated and task-dependent, γ-drive. That (ii) the empirically observed phase advance of type Ia or of type II profiles during active movement can be similarly explained by appropriate γ-drive. In summary, the simulation predicts that a highly task-modulated activation of the γ-system is instrumental in producing a large part of the empirically observed muscle spindle activity for voluntary wrist movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • al-Falahe, N. A., Nagaoka, M., & Vallbo, A. B. (1990). Response profiles of human muscle afferents during active finger movements. Brain, 113(Pt 2), 325–346.

    Article  PubMed  Google Scholar 

  • Banks RW, Hulliger M, Scheepstra KA, Otten E (1997). Pacemaker activity in a sensory ending with multiple encoding sites: the cat muscle spindle primary ending. Journal of Physiology, 498 (Pt 1):177–99.

  • Bergenheim, M., Ribot-Ciscar, E., & Roll, J. P. (2000). Proprioceptive population coding of two-dimensional limb movements in humans. I. Muscle spindle feedback during spatially oriented movements. Experimental Brain Research, 134, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Brown IE, Scott SH, Loeb GE. (1996). Mechanics of feline soleus: II. Design and validation of a mathematical model. Journal of Muscle Research and Cell Motility, 17(2):221–33.

    Google Scholar 

  • Brown MC, Goodwin GM, Matthews PB. (1969). After-effects of fusimotor stimulation on the response of muscle spindle primary afferent endings. Journal of Physiology, 205(3):677–94.

    Google Scholar 

  • Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, 20(4), 367–395.

    PubMed Central  PubMed  Google Scholar 

  • Burke, D., Hagbarth, K.-E., & Lofstedt, L. (1978). Muscle spindle activity in man during shortening and lengthening contractions. Journal of Physiology (London), 277, 131–142.

    CAS  PubMed Central  Google Scholar 

  • Crowe, A., & Matthews, P. B. (1964). The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles. Journal of Physiology (London), 174, 109–131.

    CAS  Google Scholar 

  • Dimitriou, M., & Edin, B. (2008). Discharges in human muscle spindle afferents during a keypressing task. Journal of Physiology (London), 586(Pt 22), 5455–5470.

    Article  CAS  Google Scholar 

  • Edin, B. B., & Vallbo, A. B. (1990a). Dynamic response of human muscle spindle afferents to stretch. Journal of Neurophysiology, 63(6), 1297–06.

    CAS  PubMed  Google Scholar 

  • Edin, B. B., & Vallbo, A. B. (1990b). Muscle afferent responses to isometric contractions and relaxations in humans. Journal of Neurophysiology, 63(6), 1307–1313.

    CAS  PubMed  Google Scholar 

  • Eldred, E., Granit, R., & Merton, P. A. (1953). Supraspinal control of the muscle spindle and its significance. Journal of Physiology (London), 122, 498–523.

    CAS  Google Scholar 

  • Emonet-Dénand F, Hunt CC, Laporte Y. (1985). Effects of stretch on dynamic fusimotor after-effects in cat muscle spindles. Journal of Physiology 360:201–13.

    Google Scholar 

  • Fetz, E. E., Cheney, P. D., Mewes, K., & Palmer, S. (1990). Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Progress in Brain Research, 80, 437–449.

    Article  Google Scholar 

  • Flament, D., & Hore, J. (1988). Relations of motor cortex neural discharge to kinematics of passive and active elbow movements in the monkey. Journal of Neurophysiology, 60(4), 1268–1284.

    CAS  PubMed  Google Scholar 

  • Flament, D., Fortier, P. A., & Fetz, E. E. (1992). Response patterns and post-spike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. Journal of Neurophysiology, 67, 875–889.

    CAS  PubMed  Google Scholar 

  • Garner, B. A., & Pandy, M. G. (2003). Estimation of musculotendon properties in the human upper limb. Annals of Biomedical Engineering, 31(2), 207–220.

    Article  PubMed  Google Scholar 

  • Goodwin, G. M., Hulliger, M., & Matthews, P. B. (1975). The effects of fusimotor stimulation during small amplitude stretching on the frequency-response of the primary ending of the mammalian muscle spindle. Journal of Physiology (London), 253(1), 175–206.

    CAS  Google Scholar 

  • Goodwin, G. M., & Luschei, E. S. (1975). Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys. Journal of Neurophysiology, 38, 560–571.

    CAS  PubMed  Google Scholar 

  • Hasan, Z. (1983). A model of spindle afferent response to muscle stretch. Journal of Neurophysiology, 49(4), 989–1006.

    CAS  PubMed  Google Scholar 

  • Herbert, R. D., Moseley, A. M., Butler, J. E., & Gandevia, S. C. (2002). Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. Journal of Physiology (London), 539(Pt 2), 637–645.

    Article  CAS  Google Scholar 

  • Hulliger, M. (1984). The mammalian muscle spindle and its central control. Review of Physiology, Biochemistry and Pharmacology, 101, 1–110.

    Article  CAS  Google Scholar 

  • Hulliger, M., Dürmüller, N., Prochazka, A., & Trend, P. (1989). Flexible fusimotor control of muscle spindle feedback during a variety of natural movements. Progress in Brain Research, 80, 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Hulliger, M., Matthews, P. B. C., & Noth, J. (1977a). Effects of combining static and dynamic fusimotor stimulation of the response of the muscle spindle primary ending to sinusoidal stretching. Journal of Physiology (London), 267, 839–856.

    CAS  Google Scholar 

  • Hulliger, M., Matthews, P. B. C., & Noth, J. (1977b). Static and dynamic fusimotor action on the response of Ia fibres to low frequency sinusoidal stretching of widely ranging amplitudes. Journal of Physiology (London), 267, 811–836.

    CAS  Google Scholar 

  • Hulliger, M., Nordh, E., & Vallbo, A. B. (1985). Discharge in muscle spindle afferents related to direction of slow precision movements in man. Journal of Physiology (London), 362, 437–453.

    CAS  PubMed Central  Google Scholar 

  • Jones, K. E., Wessberg, J., & Vallbo, A. B. (2001). Directional tuning of human forearm muscle afferents during voluntary wrist movements. Journal of Physiology (London), 536(Pt 2), 635–647.

    Article  CAS  Google Scholar 

  • Kakuda, N. (2000). Response of human muscle spindle afferents to sinusoidal stretching with a wide range of amplitudes. Journal of Physiology (London), 527(Pt 2), 397–404.

    Article  CAS  Google Scholar 

  • Kakuda, N., & Nagaoka, M. (1998). Dynamic response of human muscle spindle afferents to stretch during voluntary contraction. Journal of Physiology (London), 513(Pt 2), 621–628.

    Article  CAS  Google Scholar 

  • Kostyukov, A. I., & Cherkassky, V. L. (1997). Interaction of the movement-dependent, extrafusal and fusimotor after-effects in the firing of the primary spindle endings. Neuroscience, 76(4), 1257–1266.

    Article  CAS  PubMed  Google Scholar 

  • Lan, N., & He, X. (2012). Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles. Frontiers in Computational Neuroscience, 6, 66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lennerstrand, G. (1968a). Position and velocity sensitivity of muscle spindles in the cat. I. Primary and secondary endings deprived of fusimotor activation. Acta Physiologica Scandinavia, 73, 281–299.

    Article  CAS  Google Scholar 

  • Lennerstrand, G. (1968b). Position and velocity sensitivity of muscle spindles in the cat. IV. Interaction between two fusimotor fibres converging on the same spindle ending. Acta Physiologica Scandinavia, 74, 257–273.

    CAS  Google Scholar 

  • Lennerstrand, G., & Thoden, U. (1968a). Position and velocity sensitivity of muscle spindles in the cat. II. Dynamic fusimotor single-fiber activation of primary endings. Acta Physiologica Scandinavia, 74, 16–29.

    CAS  Google Scholar 

  • Lennerstrand, G., & Thoden, U. (1968b). Position and velocity sensitivity of muscle spindles in the cat. III. Static fusimotor single-fiber activation of primary and secondary endings. Acta Physiologica Scandinavia, 74, 30–49.

    CAS  Google Scholar 

  • Lieber, R. L., Fazeli, B. M., & Botte, M. J. (1990). Architecture of selected wrist flexor and extensor muscles. Journal of Hand Surgery American, 15(2), 244–250.

    Article  CAS  Google Scholar 

  • Lin, C. C., & Crago, P. E. (2002). Structural model of the muscle spindle. Annals of Biomedical Engineering, 30(1), 68–83.

    Article  CAS  PubMed  Google Scholar 

  • Maltenfort, M. G., & Burke, R. E. (2003). Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects. Journal of Neurophysiology, 89(5), 2797–2809.

    Article  PubMed  Google Scholar 

  • Matthews, P. B., & Stein, R. B. (1969). The sensitivity of muscle spindle afferents to small sinusoidal changes of length. Journal of Physiology (London), 200(3), 723–743.

    CAS  Google Scholar 

  • Mileusnic, M. P., Brown, I. E., Lan, N., & Loeb, G. E. (2006). Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. Journal of Neurophysiology, 96(4), 1772–1788.

    Article  PubMed  Google Scholar 

  • Mileusnic, M. P., & Loeb, G. E. (2006). Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ. Journal of Neurophysiology, 96(4), 1789–1802.

    Article  PubMed  Google Scholar 

  • Morgan, D. L., Prochazka, A., & Proske, U. (1984). The after-effects of stretch and fusimotor stimulation on the responses of primary endings of cat muscle spindles. Journal of Physiology (London), 356, 465–477.

    CAS  Google Scholar 

  • Murphy, P. R., Stein, R. B., & Taylor, J. (1984). Phasic and tonic modulation of impulse rates in gamma-motoneurons during locomotion in premammillary cats. Journal of Neurophysiology, 52(2), 228–243.

    CAS  PubMed  Google Scholar 

  • Poppele, R. E., & Bowman, R. J. (1970). Quantitative description of linear behavior of mammalian muscle spindles. Journal of Neurophysiology, 33(1), 59–72.

    CAS  PubMed  Google Scholar 

  • Prochazka, A. (1996). Proprioceptive feedback and movement regulation. In: Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: Am Physiol Soc, sect. 12, part I, p. 89 –127.

  • Prochazka, A., Hulliger, M., Zangger, P., & Appenteng, K. (1985). ‘Fusimotor set’: new evidence for alpha-independent control of gamma-motoneurones during movement in the awake cat. Brain Research, 339(1), 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Proske, U., Morgan, D. L., & Gregory, J. E. (1993). Thixotropy in skeletal muscle and in muscle spindles: a review. Progress in Neurobiology, 41(6), 705–721.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell, J. C., Gandevia, S. C., & Burke, D. (1990). Activation of fusimotor neurones by motor cortical stimulation in human subjects. Journal of Physiology (London), 431, 743–756.

    CAS  Google Scholar 

  • Schaafsma, A., Otten, E., & Van Willigen, J. D. (1991). A muscle spindle model for primary afferent firing based on a simulation of intrafusal mechanical events. Journal of Neurophysiology, 65, 1297–1312.

    CAS  PubMed  Google Scholar 

  • Scott, S. H., & Winter, D. A. (1991). A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force. Journal of Biomechanics, 24(2), 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S. H., Brown, I. E., & Loeb, G. E. (1996). Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. Journal of Muscle Research and Cell Motility, 17(2), 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Stark E, Drori R, Asher I, Ben-Shaul Y, Abeles M. (2007). Distinct movement parameters are represented by different neurons in the motor cortex. European Journal of Neuroscience, 26(4):1055–66.

    Google Scholar 

  • Taylor, A., Durbaba, R., & Ellaway, P. H. (2004). Direct and indirect assessment of gamma-motor firing patterns. Canadian Journal of Physiology and Pharmacology, 82(8–9), 793–802.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, A., Durbaba, R., Ellaway, P. H., & Rawlinson, S. (2006). Static and dynamic γ -motor output to ankle flexor muscles during locomotion in the decerebrate cat. Journal of Physiology (London), 571, 711–723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, A., Ellaway, P. H., Durbaba, R., & Rawlinson, S. (2000). Distinctive patterns of static and dynamic gamma motor activity during locomotion in the decerebrate cat. Journal of Physiology (London), 529, 825–836.

    Article  CAS  Google Scholar 

  • Thelen, D. G. (2003). Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Journal of Biomechanical Engineering, 125(1), 70–77.

    Article  PubMed  Google Scholar 

  • Vallbo, Å. B. (1971). Time difference between onset of spindle acceleration and skeletomotor activation in isometric voluntary contractions in man. Acta Physiologica Scandinavia, 82(3), 15A–16A.

    Article  CAS  Google Scholar 

  • Vallbo, Å. B., & Hulliger, M. (1982). The dependence of discharge rate of spindle afferent units on the size of the load during isotonic position holding in man. Brain Research, 237(2), 297–307.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, L. R., Gandevia, S. C., & Burke, D. (1995). Increased resting discharge of human spindle afferents following voluntary contractions. Journal of Physiology (London), 488(Pt 3), 833–840.

    CAS  Google Scholar 

  • Windhorst, U. (2007). Muscle proprioceptive feedback and spinal networks. Brain Research Bulletin, 73, 155–202.

    Article  CAS  PubMed  Google Scholar 

  • Windhorst, U. (2008). Muscle spindles are multi-functional (Technical comment). Brain Research Bulletin, 75, 507–508.

    Article  PubMed  Google Scholar 

  • Winters, J. M. (1990). Hill-based muscle models: a system engineering perspective. In J. M. Winters & S. Woo (Eds.), Multiple muscle systems: Biomechanics and movement organization (pp. 69–93). London: Springer.

    Chapter  Google Scholar 

  • Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Review in Biomedical Engineering, 17(4), 359–411.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the CNRS (Centre National de la Recherche Scientifique, France). Figure artwork by J-P Souteyrand. We are thankful and indebted to M. Dimitriou and B. Edin for having performed additional experiments in order to provide ensemble estimates of muscle spindle responses.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Maier.

Additional information

Action Editor: Eberhard Fetz

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandjean, B., Maier, M.A. Model-based prediction of fusimotor activity and its effect on muscle spindle activity during voluntary wrist movements. J Comput Neurosci 37, 49–63 (2014). https://doi.org/10.1007/s10827-013-0491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0491-3

Keywords

Navigation