Skip to main content
Log in

Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The Hodgkin-Huxley (HH) model is the basis for numerous neural models. There are two negative feedback processes in the HH model that regulate rhythmic spiking. The first is an outward current with an activation variable n that has an opposite influence to the excitatory inward current and therefore provides subtractive negative feedback. The other is the inactivation of an inward current with an inactivation variable h that reduces the amount of positive feedback and therefore provides divisive feedback. Rhythmic spiking can be obtained with either negative feedback process, so we ask what is gained by having two feedback processes. We also ask how the different negative feedback processes contribute to spiking. We show that having two negative feedback processes makes the HH model more robust to changes in applied currents and conductance densities than models that possess only one negative feedback variable. We also show that the contributions made by the subtractive and divisive feedback variables are not static, but depend on time scales and conductance values. In particular, they contribute differently to the dynamics in Type I versus Type II neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Clewley, R. (2004). Dominant scale analysis for automatic reduction of high-dimensional ODE systems. In Bar-Yam Y (Ed.), ICCS 2004 Proceedings. New England: Complex Systems Institute.

  • Clewley, R. (2011). Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation: a dominant scale and hybrid dynamical systems analysis. Journal of Biological Physics. doi:10.1007/s10867-011-9220-1.

    PubMed Central  PubMed  Google Scholar 

  • Clewley, R. (2012). Hybrid models and biological model reduction with PyDSTool. PLoS Computational Biology, 8(8), e1002628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clewley, R., Rotstein, H. G., & Kopell, N. (2005). A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation, 4(3), 732–759.

    Article  Google Scholar 

  • Clewley, R., Soto-Treviño, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ermentrout, G. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 7(5), 979–1001.

    Article  Google Scholar 

  • Ermentrout, G. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia, PA: SIAM.

  • Ermentrout, G., & Chow, C. C. (2002). Modeling neural oscillations. Physiology & Behaviour, 77(2002), 629–633.

    Article  CAS  Google Scholar 

  • Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. The Journal of General Physiology, 43(5), 867–896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1(6), 445–466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friesen, W. O., & Block, G. D. (1984). What is a biological oscillator? The American Journal of Physiology, 246(6 Pt 2), R847–R853.

    CAS  PubMed  Google Scholar 

  • Hairer, E., & Wanner, G. (1999). Stiff differential equations solved by Radau methods. Journal of Computational and Applied Mathematics, 111, 93–111.

  • Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107(2), 165–181.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howell, A. S., Jin, M., Wu, C., Zyla, T. R., Elston, T. C., & Lew, D. J. (2012). Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell, 149(2), 322–333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izhikevich, E. M. (1999). Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Transaction on Neural Networks, 10(3), 499–507.

    Article  CAS  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking, and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.

    Article  Google Scholar 

  • Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1867–1872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng, X., Huguet, G., & Rinzel, J. (2012). Type III excitability, slope sensitivity and coincidence detection. Discrete and Continuous DYnamical Systems, 32(8), 2729–2757.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.

    Article  Google Scholar 

  • Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 4(15), 2944–2946.

    Google Scholar 

  • Tabak, J., O’Donovan, M. J., & Rinzel, J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of Computational Neuroscience, 21(3), 307–328.

    Article  PubMed  Google Scholar 

  • Tabak, J., Rinzel, J., & Bertram, R. (2011). Quantifying the relative contributions of divisive and subtractive feedback to rhythm generation. PLoS Computational Biology, 7(4), e1001124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomaiuolo, M., Bertram, R., & Houle, D. (2008). Enzyme isoforms may increase phenotypic robustness. Evolution, 62(11), 2884–2893.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C., & Ferrell, J. E., Jr. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321(5885), 126–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, X.J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4(1), 84–97.

Download references

Acknowledgments

RB and JT were supported by NIH grant DK43200 and NSF grant DMS1220063.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Tabak.

Additional information

Action Editor: J. Rinzel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(RTF 0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şengül, S., Clewley, R., Bertram, R. et al. Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model. J Comput Neurosci 37, 403–415 (2014). https://doi.org/10.1007/s10827-014-0511-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0511-y

Keywords

Navigation