Skip to main content

Advertisement

Log in

Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neurological sequelae of mild traumatic brain injury are associated with the damage to white matter myelinated axons. In vitro models of axonal injury suggest that the progression to pathological ruin is initiated by the mechanical damage to tetrodotoxin-sensitive voltage-gated sodium channels that breaches the ion balance through alteration in kinetic properties of these channels. In myelinated axons, sodium channels are concentrated at nodes of Ranvier, making these sites vulnerable to mechanical injury. Nodal damage can also be inflicted by injury-induced partial demyelination of paranode/juxtaparanode compartments that flank the nodes and contain high density of voltage-gated potassium channels. Demyelination-induced potassium deregulation can further aggravate axonal damage; however, the role of paranode/juxtaparanode demyelination in immediate impairment of axonal function, and its contribution to the development of axonal depolarization remain elusive. A biophysically realistic computational model of myelinated axon that incorporates ion exchange mechanisms and nodal/paranodal/juxtaparanodal organization was developed and used to study the impact of injury-induced demyelination on axonal signal transmission. Injured axons showed alterations in signal propagation that were consistent with the experimental findings and with the notion of reduced axonal excitability immediately post trauma. Injury-induced demyelination strongly modulated the rate of axonal depolarization, suggesting that trauma-induced damage to paranode myelin can affect axonal transition to degradation. Results of these studies clarify the contribution of paranode demyelination to immediate post trauma alterations in axonal function and suggest that partial paranode demyelination should be considered as another “injury parameter” that is likely to determine the stability of axonal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bhat, M. A. (2003). Molecular organization of axo-glial junctions. Current Opinion in Neurobiology, 13, 552–559.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, M. A., Rios, J. C., Lu, Y., Garcia-Fresco, G. P., Ching, W., Martin, M. S., et al. (2001). Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron, 30, 369–383.

    Article  CAS  PubMed  Google Scholar 

  • Bigler, E. D. (2004). Neuropsychological results and neuropathological findings in autopsy in a case of mild traumatic brain injury. Journal International Neuropsychology Social, 10(5), 794–800.

    Article  Google Scholar 

  • Black, J. A., Kocsis, J. D., & Waxman, S. G. (1990). Ion channel organization of the myelinated fiber. Trends in Neuroscience, 13(2), 48–54.

    Article  CAS  Google Scholar 

  • Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344, 1055–1056.

    Article  CAS  PubMed  Google Scholar 

  • Bostock, H. (1983). The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. Journal of Physiology, 341, 59–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boucher, P. A., Joos, B., & Morris, C. E. (2012). Coupled left-shift of Nav channels: modeling the Na + −loading and dysfunctional excitability of damaged axons. Journal of Computational Neuroscience, 33(2), 301–319.

    Article  PubMed  Google Scholar 

  • Bramlett, H. M., & Dietrich, W. D. (2002). Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathologica, 103, 607–614.

    Article  PubMed  Google Scholar 

  • Brill, M. H., Waxman, S. G., Moore, J. W., & Joyner, R. W. (1977). Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. Journal Neurological Neurosurgery Psychiatry, 40(769–774).

  • Buki, A., & Povlishock, J. T. (2006). All roads lead to disconnection?–Traumatic axonal injury revisited. Acta Neurochirurgica (Wien), 148(2), 181–193.

    Article  CAS  Google Scholar 

  • Coggan, J. S., Ocker, G. K., Sejnowski, T. J., & Prescott, S. A. (2011). Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. Journal of Neural Engineering, 8(6), 065002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Coggan, J. S., Prescott, S. A., Bartol, T. M., & Sejnowski, T. J. (2010). Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proceedings of the National Academy of Sciences of the United States of America, 107, 20602–20609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gale, S. D., Johnson, S. C., Bigler, E. D., & Blatter, D. D. (1995). Non-specific white matter degeneration following traumatic brain injury. Journal International Neuropsychology Society, 1, 17–28.

    Article  CAS  Google Scholar 

  • Gow, A., & Devaux, J. (2008). A model of tight junction function in CNS myelinated axons. Neuron Glia Biology, 4(4), 307–317.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., et al. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA Concussion Study. JAMA, 290(19), 2549–2555.

    Article  CAS  PubMed  Google Scholar 

  • Gysland, S. M., Mihalik, J. P., Register-Mihalik, J. K., Trulock, S. C., Shields, E. W., & Guskiewicz, K. M. (2012). The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Annals of Biomedical Engineering, 40(1), 14–22.

    Article  PubMed  Google Scholar 

  • Henry, L. C., Tremblay, J., Tremblay, S., Lee, A., Brun, C., Lepore, N., et al. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 28, 2049–2059.

    Article  PubMed  Google Scholar 

  • Hille, B. (2001). Ions channels of excitable membranes (3ed.). Sunderland: Sinauer.

    Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huff, T. B., Shi, Y., Sun, W., Wu, W., Shi, R., & Cheng, J. X. (2011). Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. PloS One, 6(3), e17176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwata, A., Stys, P. K., Wolf, J. A., Chen, X. H., Taylor, A. G., Meaney, D. F., et al. (2004). Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. Journal of Neuroscience, 24(19), 4605–4613.

    Article  CAS  PubMed  Google Scholar 

  • Janigro, D., Gasparini, S., D’Ambrosio, R., McKhann, G., & DiFrancesco, D. (1997). Reduction of K + uptake in glia prevents long-term depression maintenance and causes epileptiform activity. Journal of Neuroscience, 17, 2813–2824.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.

    CAS  PubMed  Google Scholar 

  • Kontos, A. P., Kotwal, R. S., Elbin, R. J., Lutz, R. H., Forsten, R. D., Benson, P. J., et al. (2013). Residual effects of combat-related mild traumatic brain injury. Journal of Neurotrauma, 30, 680–686.

    Article  PubMed  Google Scholar 

  • Krishnan, G. P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31, 8870–8882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kutzelnigg, A., Lucchinetti, C. F., Stadelmann, C., Bruck, W., Rauschka, H., Bergmann, M., et al. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain, 128(11), 2705–2712.

    Article  PubMed  Google Scholar 

  • Lauger, P. (1991). Electrogenic ion pumps. Sunderland: Sinauer.

    Google Scholar 

  • Lopreore, C. L., Bartol, T. M., Coggan, J. S., Keller, D. X., Sosinsky, G. E., Ellisman, M. H., et al. (2008). Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophysical Journal, 95(6), 2624–2635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maxwell, W. L. (1996). Histopathological changes at central nodes of Ranvier after stretch-injury. Microscopy Research and Technique, 34(6), 522–535.

    Article  CAS  PubMed  Google Scholar 

  • McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.

    PubMed  Google Scholar 

  • Moore, J. W., Joyner, R. W., Brill, M. H., Waxman, S. G., & Najar-Joa, M. (1978). Simulations of conduction in uniform myelinated fibers: relative sensitivity to changes in nodal and internodal parameters. Biophysical Journal, 21, 147–160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moran, O., & Mateu, L. (1983). Loosening of paranodal myelin by repetitive propagation of action potentials. Nature, 304(5924), 344–345.

    Article  CAS  PubMed  Google Scholar 

  • Nashmi, R., & Fehlings, M. G. (2001). Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Research Reviews, 38, 165–191.

    Article  CAS  PubMed  Google Scholar 

  • Ng, H. K., Mahaliyana, R. D., & Poon, W. S. (1994). The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clinical Neurology and Neurosurgery, 96, 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Nikolaeva, M. A., Mukherjee, B., & Stys, P. K. (2005). Na+ dependent source of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia. Journal of Neuroscience, 25(43), 9960–9967.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang, H., Sun, W., Fu, Y., Li, J., Cheng, J. X., Nauman, E., et al. (2010). Compression induces acute demyelination and potassium channel exposure in spinal cord. Journal of Neurotrauma, 27, 1109–1120.

    Article  PubMed Central  PubMed  Google Scholar 

  • Poliak, S., & Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews Neuroscience, 4, 968–980.

    Article  CAS  PubMed  Google Scholar 

  • Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., et al. (2003). Juxtaparanodal clustering of Shaker-like K + channels in myelinated axons depends on Caspr2 and TAG-1. Journal of Cell Biology, 162, 1149–1160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasband, M. N., & Trimmer, J. S. (2001). Developmental clustering of ion channels at and near the node of Ranvier. Developmental Biology, 236, 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, T. M., Greer, J. E., Vanderveer, A. S., & Phillips, L. L. (2010). Proteolysis of submembrane cytoskeletal proteins ankyrin-G and aII-spectrin following diffuse brain injury: a role in white matter vulnerability at nodes of Ranvier. Brain Pathology, 20(6), 1055–1068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saatman, K. E., Creed, J., & Raghupathi, R. (2010). Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 7(1), 31–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6(2), 137–192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi, R., & Blight, A. R. (1996). Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. Journal of Neurophysiology, 76(3), 1572–1580.

    CAS  PubMed  Google Scholar 

  • Shi, R., & Pryor, J. D. (2002). Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience, 110(4), 765–777.

    Article  CAS  PubMed  Google Scholar 

  • Shi, R., & Whitebone, J. (2006). Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. Journal of Neurophysiology, 95, 3384–3390.

    Article  PubMed  Google Scholar 

  • Southwood, C., He, C., Garbern, J., Kamholz, J., Arroyo, E., & Gow, A. (2004). CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. Journal of Neuroscience, 24, 11215–11225.

    Article  CAS  PubMed  Google Scholar 

  • Staal, J. A., Dickson, T. C., Gasperini, R., Liu, Y., Foa, L., & Vickers, J. C. (2010). Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. Journal of Neurochemistry, 112, 1147–1155.

    Article  CAS  PubMed  Google Scholar 

  • Steffensen, I., Waxman, S. G., Mills, L., & Stys, P. K. (1997). Immunolocalization of the Na + −Ca2+ exchanger in mammalian myelinated axons. Brain Research, 776(1–2), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Stephanova, D. I., & Bostock, H. (1995). A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents. Biological Cybernetics, 73(3), 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Stephanova, D. I., & Chobanova, M. (1997). Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations. Biological Cybernetics, 76(4), 311–314.

    Article  CAS  PubMed  Google Scholar 

  • Stephanova, D. I., & Daskalova, M. (2005a). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Clinical Neurophysiology, 116(5), 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  • Stephanova, D. I., & Daskalova, M. (2005b). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Clinical Neurophysiology, 116(10), 2334–2341.

    Article  CAS  PubMed  Google Scholar 

  • Stephanova, D. I., & Daskalova, M. (2008). Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. European Biophysics Journal, 37(2), 183–195.

    Article  PubMed  Google Scholar 

  • Stephanova, D. I., Daskalova, M., & Alexandrov, A. S. (2005). Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clinical Neurophysiology, 116(5), 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  • Stephanova, D. I., & Mileva, K. (2000). Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Biological Cybernetics, 83(2), 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Stys, P. K. (1998). Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. Journal Cerebral Blood Flow Metabolism, 18(1), 2–25.

    Article  CAS  Google Scholar 

  • Stys, P. K. (2005). General mechanisms of axonal damage and its prevention. Journal of the Neurological Sciences, 233(1–2), 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Stys, P. K., & Steffensen, I. (1996). Na+-Ca2+ exchange in anoxic/ischemic injury of CNS myelinated axons. Annals New York Academy Science, 779, 366–378.

    Article  CAS  Google Scholar 

  • Sun, W., Fu, Y., Shi, Y., Cheng, J. X., Cao, P., & Shi, R. (2012). Paranodal myelin damage after acute stretch in guinea pig spinal cord. Journal of Neurotrauma, 29, 611–619.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun, W., Smith, D., Fu, Y., Cheng, J. X., Bryn, S., Borgens, R., et al. (2010). Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. Journal of Neurophysiology, 103, 469–478.

    Article  CAS  PubMed  Google Scholar 

  • Vabnick, I., & Shrager, P. (1998). Ion channel redistribution and function during development of the myelinated axon. Journal of Neurobiology, 37, 80–96.

    Article  CAS  PubMed  Google Scholar 

  • Volman, V., Bazhenov, M., & Sejnowski, T. J. (2012). Computational models of neuron-astrocyte interaction in epilepsy. Frontiers in Computational Neuroscience, 6(58), 1–10.

    Google Scholar 

  • Volman, V., & Ng, L. J. (2013). Computer modeling of mild axonal injury: implications for axonal signal transmission. Neural Computation, 25(10), 2646–2681.

    Article  PubMed  Google Scholar 

  • von Reyn, C. R., Spaethling, J. M., Mesfin, M. N., Ma, M., Neumar, R. W., Smith, D. H., et al. (2009). Calpain mediates proteolysis of the voltage-gated sodium channel a-subunit. Journal of Neuroscience, 29(33), 10350–10356.

    Article  Google Scholar 

  • Wang, J. A., Lin, W., Morris, T., Banderali, U., Juranka, P. F., & Morris, C. E. (2009). Membrane trauma and Na+ leak from Nav1.6 channels. American Journal of Physiology. Cell Physiology, 297, C823–C834. doi:10.1152/ajpcell.00505.2008.

    Article  CAS  PubMed  Google Scholar 

  • Waxman, S. G., & Bennett, M. V. L. (1972). Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nature - New Biology, 238, 217–219.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D. F., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. Journal of Neuroscience, 21(6), 1923–1930.

    CAS  PubMed  Google Scholar 

  • Zeng, S., & Jung, P. (2008). Simulation analysis of internodal sodium channel function. Physical Review E, 78, 061916.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the US Army Medical Research and Materiel Command under contract W81XWH-11-D-0011. This document is cleared for all audiences for OPSEC purposes. Cleared 09/18/2013. The opinions or assertions contained herein are private views of the authors, and are not to be construed as official or as reflecting views of the Department of the Army or the Department of Defense. PAO REVIEWED. The authors declare no competing financial interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Volman.

Additional information

Action Editor: T. Sejnowski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volman, V., Ng, L.J. Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci 37, 439–457 (2014). https://doi.org/10.1007/s10827-014-0515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0515-7

Keywords

Navigation