Skip to main content
Log in

Encoding whisker deflection velocity within the rodent barrel cortex using phase-delayed inhibition

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The primary sensory feature represented within the rodent barrel cortex is the velocity with which a whisker has been deflected. Whisker deflection velocity is encoded within the thalamus via population synchrony (higher deflection velocities entail greater synchrony among the corresponding thalamic population). Thalamic (TC) cells project to regular spiking (RS) cells within the barrel cortex, as well as to inhibitory cortical fast-spiking (FS) neurons, which in turn project to RS cells. Thus, TC spikes result in EPSPs followed, with a small time lag, by IPSPs within an RS cell, and hence the RS cell decodes TC population synchrony by employing a phase-delayed inhibition synchrony detection scheme. As whisker deflection velocity is increased, the probability that an RS cell spikes rises, while jitter in the timing of RS cell spikes remains constant. Furthermore, repeated whisker deflections with fixed velocity lead to system adaptation – TC →RS, TC →FS, and FS →RS synapses all weaken substantially, leading to a smaller probability of spiking of the RS cell and increased jitter in the timing of RS cell spikes. Interestingly, RS cell activity is better able to distinguish among different whisker deflection velocities after adaptation. In this work, we construct a biophysical model of a basic ‘building block’ of barrel cortex – the feedforward circuit consisting of TC cells, FS cells, and a single RS cell – and we examine the ability of the purely feedforward circuit to explain the experimental data on RS cell spiking probability, jitter, adaptation, and deflection velocity discrimination. Moreover, we study the contribution of the phase-delayed inhibition network structure to the ability of an RS cell to decode whisker deflection velocity encoded via TC population synchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adibi, M., Clifford, C., Arabzadeh, E. (2013a). Informational basis of sensory adaptation: entropy and single-spike efficiency in rat barrel cortex. The Journal of Neuroscience, 33(37), 14921–14926.

    Article  CAS  PubMed  Google Scholar 

  • Adibi, M., McDonald, J., Clifford, C., Arabzadeh, E. (2013b). Adaptation improves neural coding efficiency despite increasing correlations in variability. The Journal of Neuroscience, 33(5), 2108–2120.

    Article  CAS  PubMed  Google Scholar 

  • Benowitz, L.I., & Karten, H.J. (2004). Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study. The Journal of Comparative Neurology, 167(4), 503–520.

    Article  Google Scholar 

  • Benshalom, G., & White, E. (1986). Quantification of thalamocortical synapses with spiny stellate neurons in layer iv of mouse somatosensory cortex. Journal of Computational Neuroscience, 253(3), 303–314.

    Article  CAS  Google Scholar 

  • Blitz, D.M., & Regehr, W.G. (2005). Timing and specificity of feed-forward inhibition within the LGN. Neuron, 45(6), 917–928.

    Article  CAS  PubMed  Google Scholar 

  • Bruno, R. (2011). Synchrony in sensation. Current Opinion in Neurobiology, 21(5), 701–708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruno, R., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Science, 312(5780), 1622–1627.

    Article  CAS  PubMed  Google Scholar 

  • Bruno, R., & Simons, D. (2002). Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. The Journal of Neuroscience, 22(24), 10966–10975.

    CAS  PubMed  Google Scholar 

  • Cruikshank, S., Lewis, T., Connors, B. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nature Neuroscience, 10, 462–468.

    CAS  PubMed  Google Scholar 

  • Deng, C., & Rogers, L.J. (1998). Organisation of the tectorotundal and SP/IPS-rotundal projections in the chick. The Journal of Comparative Neurology, 394(2), 171–185.

    Article  CAS  PubMed  Google Scholar 

  • Eckhorn, R. (1994). Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Progress in Brain Research, 102, 405–426.

    Article  CAS  PubMed  Google Scholar 

  • Fricker, D., & Miles, R. (2000). EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron, 28(2), 559–569.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, R., Habermann, C., Laurent, G. (2004). Multiplexing using synchrony in the zebrafish olfactory bulb. Nature Neuroscience, 7, 862–871.

    Article  CAS  PubMed  Google Scholar 

  • Gabernet, L., Jadhav, S., Feldman, D., Carandini, M., Scanzianiemail, M. (2005). Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron, 48(2), 315–327.

    Article  CAS  PubMed  Google Scholar 

  • Gray, C. (1994). Synchronous oscillations in neuronal systems: mechanisms and functions. Journal of Computational Neuroscience, 1, 11–38.

    Article  CAS  PubMed  Google Scholar 

  • Guillery, R. (1967). Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. Journal of Computational Neuroscience, 130(3), 197–221.

    Article  CAS  Google Scholar 

  • Jortner, R.A., Farivar, S.S., Laurent, G. (2007). A simple connectivity scheme for sparse coding in an olfactory system. The Journal of Neuroscience, 27(7), 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, B., & Patel, M. (2013). Encoding with synchrony: Phase-delayed inhibition allows for reliable and specific stimulus detection. Journal of Theoretical Biology, 328, 26–32.

    Article  PubMed  Google Scholar 

  • Kyriazi, H., & Simons, D. (1993). Thalamocortical response transformations in simulated whisker barrels. Journal of Neuroscience, 13(4), 1601–1615.

    CAS  PubMed  Google Scholar 

  • Laurent, G., & Davidowitz, H. (1994). Encoding of olfactory information with oscillating neural assemblies. Science, 265, 1872–1875.

    Article  CAS  PubMed  Google Scholar 

  • Leitch, B., Laurent, G., et al. (1996). GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. The Journal of Comparative Neurology, 372(4), 487–514.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Honda, C., Jones, E. (1995). Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. Journal of Computational Neuroscience, 352(1), 69–91.

    Article  CAS  Google Scholar 

  • Ly, C., Middleton, J., Doiron, B. (2012). Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex. Frontiers in Computational Neuroscience, 6(7).

  • Marthy, V., & Fetz, E. (1992). Coherent 25- to 35-hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 89, 5670–5674.

    Article  Google Scholar 

  • Middleton, J., Omar, C., Doiron, B., Simons, D. (2012). Neural correlation is stimulus modulated by feedforward inhibitory circuitry. The Journal of Neuroscience, 32(2), 506–518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittmann, W., Koch, U., Häusser, M. (2005). Feed-forward inhibition shapes the spike output of cerebellar purkinje cells. The Journal of Physiology, 563(2), 369–378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel, M., & Joshi, B. (2013). Decoding synchronized oscillations within the brain: phase-delayed inhibition provides a robust mechanism for creating a sharp synchrony filter. Journal of Theoretical Biology, 334, 13–25.

    Article  PubMed  Google Scholar 

  • Patel, M., Rangan, A V, Cai, D. (2009). A large-scale model of the locust antennal lobe. Journal of Computational Neuroscience, 27(3), 553–567.

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel, M., Rangan, A.V., Cai, D. (2013). Coding of odors by temporal binding within a model network of the locust antennal lobe. Frontiers in Computational Neuroscience, 7(50), 1–18.

    Google Scholar 

  • Patel, M., & Reed, M. (2013). Stimulus encoding within the barn owl optic tectum using gamma oscillations vs. spike rate: A modeling approach. Network: Computation in Neural Systems, 24(2), 52–74.

    Google Scholar 

  • Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G. (2002). Oscillations and sparsening of odor representations in the mushroom body. Science, 297(5580), 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Pesavento, M., & Pinto, D. (2012). Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs. Journal of Neurophysiology, 108(9), 2452–2472.

    Article  PubMed  Google Scholar 

  • Pesavento, M., Rittenhouse, C., Pinto, D. (2010). Response sensitivity of barrel neuron subpopulations to simulated thalamic input. Journal of Neurophysiology, 103(6), 3001–3016.

    Article  PubMed  Google Scholar 

  • Petersen, C. (2007). The functional organization of the barrel cortex. Neuron, 56(2), 339–355.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, D., Brumberg, J., Simons, D. (2000). Circuit dynamics and coding strategies in rodent somatosensory cortex. Journal of Neurophysiology, 83(3), 1158–1166.

    CAS  PubMed  Google Scholar 

  • Pinto, D., Brumberg, J., Simons, D., Ermentrout, G. (1996). A quantitative population model of whisker barrels: re-examining the wilson-cowan equations. Journal of Computational Neuroscience, 3(3), 247–264.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, D., Hartings, J., Brumberg, J., Simons, D. (2003). Cortical damping: Analysis of thalamocortical response transformations in rodent barrel cortex. Cerebral Cortex, 13(1), 33–44.

    Article  PubMed  Google Scholar 

  • Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293(5532), 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  • Sridharan, D., Boahen, K., Knudsen, E.I. (2011). Space coding by gamma oscillations in the barn owl optic tectum. Journal of Neurophysiology, 105(5), 2005–2017.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun, Q., Huguenard, J., Prince, D (2006). Barrel cortex microcircuits: Thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. Journal Neuroscience, 26(4), 1219–1230.

    Article  CAS  Google Scholar 

  • Tao, L., Shelley, M., McLaughlin, D., Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temereanca, S., Brown, E., Simons, D. (2008). Rapid changes in thalamic firing synchrony during repetitive whisker stimulation. The Journal of Neuroscience, 28(44), 11153–11164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temereanca, S., & Simons, D. (2004). Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system. Neuron, 41, 639–651.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Webber, R., Stanley, G. (2010). Thalamic synchrony and the adaptive gating of information flow to cortex. Nature Neuroscience, 13, 1534–1541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wehr, M., & Zador, A.M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Wilent, W., & Contreras, D. (2005). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neuroscience, 8(10), 1364–1370.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Runjing Liu and Mainak Patel were partially supported by a National Science Foundation grant (DMS-0943760).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Patel.

Additional information

Action Editor: David Golomb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Patel, M. & Joshi, B. Encoding whisker deflection velocity within the rodent barrel cortex using phase-delayed inhibition. J Comput Neurosci 37, 387–401 (2014). https://doi.org/10.1007/s10827-014-0535-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0535-3

Keywords

Navigation