Skip to main content
Log in

From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Models of electrical activity in excitable cells involve nonlinear interactions between many ionic currents. Changing parameters in these models can produce a variety of activity patterns with sometimes unexpected effects. Further more, introducing new currents will have different effects depending on the initial parameter set. In this study we combined global sampling of parameter space and local analysis of representative parameter sets in a pituitary cell model to understand the effects of adding K + conductances, which mediate some effects of hormone action on these cells. Global sampling ensured that the effects of introducing K + conductances were captured across a wide variety of contexts of model parameters. For each type of K + conductance we determined the types of behavioral transition that it evoked. Some transitions were counterintuitive, and may have been missed without the use of global sampling. In general, the wide range of transitions that occurred when the same current was applied to the model cell at different locations in parameter space highlight the challenge of making accurate model predictions in light of cell-to-cell heterogeneity. Finally, we used bifurcation analysis and fast/slow analysis to investigate why specific transitions occur in representative individual models. This approach relies on the use of a graphics processing unit (GPU) to quickly map parameter space to model behavior and identify parameter sets for further analysis. Acceleration with modern low-cost GPUs is particularly well suited to exploring the moderate-sized (5-20) parameter spaces of excitable cell and signaling models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barrio, R., & Shilnikov, A. (2011). Parameter-sweeping techniques for temporal dynamics of neuronal systems: Case study of hindmarsh-rose model. The Journal of Mathematical Neuroscience, 1(1), 6.

    Article  PubMed  Google Scholar 

  • Barrio, R., Rodríguez, M., Serrano, S., & Shilnikov, A. (2015). Mechanism of quasi-periodic lag jitter in bursting rhythms by a neuronal network. EPL (Europhysics Letters), 112(3), 38,002.

    Article  Google Scholar 

  • Brette, R., & Goodman, D.F.M. (2012). Simulating spiking neural networks on GPU. Network: Computation in Neural Systems, 23(4), 167–182.

    Google Scholar 

  • Calin-Jageman, R.J., Tunstall, M.J., Mensh, B.D., Katz, P.S., & Frost, W.N. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in tritonia. Journal of Neurophysiology, 98(4), 2382–2398.

    Article  PubMed  Google Scholar 

  • Caplan, J.S., Williams, A.H., & Marder, E. (2014). Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations. The Journal of Neuroscience, 34(14), 4963–4975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWoskin, D., Geng, W., Stinchcombe, A.R., & Forger, D.B. (2014). It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms. Interface focus, 4(3), 20130,076.

    Article  Google Scholar 

  • Dhooge, A., Govaerts, W., & Kuznetsov, Y.A. (2003). MATCONT: A Matlab package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software (TOMS), 29(2), 141–164.

    Article  Google Scholar 

  • Doedel, E., & Kernevez, J.P. (1986). AUTO, Software For Continuation And Bifurcation Problems In Ordinary Differential Equations. California Institute of Technology.

  • Doloc-Mihu, A., & Calabrese, R.L. (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. Journal of Biological Physics, 37(3), 263–283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ermentrout, B. (2002). Simulating analyzing And Animating Dynamical Systems. SIAM: A Guide To XPPAUT For Researchers And Students.

    Book  Google Scholar 

  • Fakler, B., & Adelman, J.P. (2008). Control of KCa channels by calcium nano/microdomains. Neuron, 59 (6), 873–881.

    Article  CAS  PubMed  Google Scholar 

  • Foster, W.R., Ungar, L.H., & Schwaber, J.S. (1993). Significance of conductances in Hodgkin-Huxley models. Journal of Neurophysiology, 70(6), 2502–2518.

    CAS  PubMed  Google Scholar 

  • Goldman, M.S., Golowasch, J., Marder, E., & Abbott, L.F. (2001). Global structure, robustness, and modulation of neuronal models. The Journal of Neuroscience, 21(14), 5229–5238.

    CAS  PubMed  Google Scholar 

  • Günay, C. (2014). Neuronal model databases. In Jaeger, D, & Jung, R (Eds.) Encyclopedia of Computational Neuroscience (pp. 1–6). New York: Springer.

  • Günay, C., Edgerton, J.R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of Neuroscience, 28(30), 7476–7491.

    Article  PubMed  Google Scholar 

  • Hindmarsh, J., & Rose, R. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London B: Biological Sciences, 221(1222), 87–102.

    Article  CAS  PubMed  Google Scholar 

  • Iooss, B., & Lemaître, P (2015). A review on global sensitivity analysis methods. In Dellino, G, & Meloni, C (Eds.) Uncertainty management in simulation-optimization of complex systems operations research/computer science interfaces series, (Vol. 59 pp. 101–122). US: springer.

  • Kispersky, T.J., Caplan, J.S., & Marder, E. (2012). Increase in sodium conductance decreases firing rate and gain in model neurons. The Journal of Neuroscience, 32(32), 10,995–11,004.

    Article  CAS  Google Scholar 

  • Linaro, D., Champneys, A., Desroches, M., & Storace, M. (2012). Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster. SIAM Journal on Applied Dynamical Systems, 11(3), 939–962.

    Article  Google Scholar 

  • Marin, B., Barnett, W.H., Doloc-Mihu, A., Calabrese, R.L., & Cymbalyuk, G.S. (2013). High prevalence of multistability of rest states and bursting in a database of a model neuron. PLoS Computational Biology, 9(3), e1002,930.

    Article  CAS  Google Scholar 

  • McKay, M.D., Beckman, R.J., & Conover, W.J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.

    Google Scholar 

  • Osinga, H., & Tsaneva-Atanasova, K. (2010). Dynamics of plateau bursting depending on the location of its equilibrium. Journal of Neuroendocrinology, 22(12), 1301–1314.

    Article  CAS  PubMed  Google Scholar 

  • Osinga, H.M., Sherman, A., & Tsaneva-Atanasova, K. (2012). Cross-currents between biology and mathematics: The codimension of pseudo-plateau bursting. Discrete and Continuous Dynamical Systems Series A, 32(8), 2853–2877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prinz, A.A., Billimoria, C.P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015.

    Article  PubMed  Google Scholar 

  • Prinz, A.A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.

    Article  CAS  PubMed  Google Scholar 

  • Rinzel, J., & Ermentrout, G.B. (1998). Analysis of neural excitability and oscillations. Methods in Neuronal Modeling, 2, 251–292.

    Google Scholar 

  • Rodríguez, M., Blesa, F., & Barrio, R. (2015). OpenCL parallel inte gration of ordinary differential equations: Applications in computational dynamics. Computer Physics Communications, 192, 228–236.

    Article  Google Scholar 

  • Sherman, A. (2011). Dynamical systems theory in physiology. The Journal of General Physiology, 138(1), 13–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, A., Keizer, J., & Rinzel, J. (1990). Domain model for Ca 2+-inactivation of Ca 2+ channels at low channel density. Biophysical Journal, 58(4), 985–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, J.V., Osinga, H.M., LeBeau, A., & Sherman, A. (2008). Resetting behavior in a model of bursting in secretory pituitary cells: Distinguishing plateaus from pseudo-plateaus. Bulletin of Mathematical Biology, 70(1), 68–88.

    Article  PubMed  Google Scholar 

  • Stojilković, S.S., Tabak, J., & Bertram, R. (2010). Ion channels and signaling in the pituitary gland. Endocrine Reviews, 31(6), 845–915.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storace, M., Linaro, D., & de Lange, E. (2008). The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3), 033128.

    Article  Google Scholar 

  • Tabak, J., Toporikova, N., Freeman, M.E., & Bertram, R. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. Journal of Computational Neuroscience, 22(2), 211–222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabak, J., Tomaiuolo, M., Gonzalez-Iglesias, A.E., Milescu, L.S., & Bertram, R. (2011). Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study. The Journal of Neuroscience, 31(46), 16,855–16,863.

    Article  CAS  Google Scholar 

  • Taylor, A.L., Goaillard, J.M., & Marder, E. (2009). How multiple conductances determine electrophysiological properties in a multicompartment model. The Journal of Neuroscience, 29(17), 5573–5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teka, W., Tabak J., Vo, T., Wechselberger, M., & Bertram, R. (2011a). The dynamics underlying pseudo-plateau bursting in a pituitary cell model. The Journal of Mathematical Neuroscience, 1(1), 1–23.

  • Teka, W., Tsaneva-Atanasova, K., Bertram, R., & Tabak, J. (2011b). From plateau to pseudo-plateau bursting: Making the transition. Bulletin of Mathematical Biology, 73(6), 1292–1311.

  • Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. Journal of Nonlinear Science, 2(2), 135–182.

    Article  Google Scholar 

  • Toporikova, N., Tabak, J., Freeman, M.E., & Bertram, R. (2008). A-type K + current can act as a trigger for bursting in the absence of a slow variable. Neural Computation, 20(2), 436–451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsaneva-Atanasova, K., Osinga, H.M., Rieß, T., & Sherman, A. (2010). Full system bifurcation analysis of endocrine bursting models. Journal of Theoretical Biology, 264(4), 1133–1146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor, F., Zivadinovic, D., Martinez-Fuentes, A.J., & Stojilkovic, S.S. (2001). Dependence of pituitary hormone secretion on the pattern of spontaneus voltage-gated calcium influx: Cell type-specific action potential secretion coupling. Journal of Biological Chemistry, 276(36), 33,840–33,846.

    Article  CAS  Google Scholar 

  • Vo, T., Bertram, R., Tabak, J., & Wechselberger, M. (2010). Mixed mode oscillations as a mechanism for pseudo-plateau bursting. Journal of Computational Neuroscience, 28(3), 443–458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vo, T., Bertram, R., & Wechselberger, M. (2013). Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting. SIAM Journal on Applied Dynamical Systems, 12(2), 789–830.

    Article  Google Scholar 

  • Vo, T., Tabak, J., Bertram, R., & Wechselberger, M. (2014). A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. Journal of Computational Neuroscience, 36(2), 259–278.

    Article  PubMed  Google Scholar 

  • Williams, A.H., Kwiatkowski, M.A., Mortimer, A.L., Marder, E., Zeeman, M.L., & Dickinson, P.S. (2013). Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis. Journal of Neurophysiology, 109(10), 2451–2465.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant DMS1220063 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, P., Bertram, R. & Tabak, J. From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability. J Comput Neurosci 40, 331–345 (2016). https://doi.org/10.1007/s10827-016-0600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0600-1

Keywords

Navigation