Skip to main content
Log in

Mechanisms of circumferential gyral convolution in primate brains

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Mammalian cerebral cortices are characterized by elaborate convolutions. Radial convolutions exhibit homology across primate species and generally are easily identified in individuals of the same species. In contrast, circumferential convolutions vary across species as well as individuals of the same species. However, systematic study of circumferential convolution patterns is lacking. To address this issue, we utilized structural MRI (sMRI) and diffusion MRI (dMRI) data from primate brains. We quantified cortical thickness and circumferential convolutions on gyral banks in relation to axonal pathways and density along the gray matter/white matter boundaries. Based on these observations, we performed a series of computational simulations. Results demonstrated that the interplay of heterogeneous cortex growth and mechanical forces along axons plays a vital role in the regulation of circumferential convolutions. In contrast, gyral geometry controls the complexity of circumferential convolutions. These findings offer insight into the mystery of circumferential convolutions in primate brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bayly, P. V., Okamoto, R. J., Xu, G., Shi, Y., & Taber, L. A. (2013). A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Physical Biology, 10(1), 016005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayly, P. V., Taber, L. A., & Kroenke, C. D. (2014). Mechanical forces in cerebral cortical folding: A review of measurements and models. Journal of the Mechanical Behavior of Biomedical Materials, 29, 568–581.

    Article  CAS  PubMed  Google Scholar 

  • Beck, K. D., Powell-Braxton, L., Widmer, H. R., Valverde, J., & Hefti, F. (1995). Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron, 14(4), 717–730.

    Article  CAS  PubMed  Google Scholar 

  • Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34(1), 144–155.

    Article  CAS  PubMed  Google Scholar 

  • Borrell, V., & Götz, M. (2014). Role of radial glial cells in cerebral cortex folding. Current Opinion in Neurobiology, 27C, 39–46.

    Article  Google Scholar 

  • Brown, M., Keynes, R., & Lumsden, A. (2002). The developing brain. Oxford: Oxford University Press.

    Google Scholar 

  • Budday, S., Steinmann, P., & Kuhl, E. (2014). The role of mechanics during brain development. Journal of the Mechanics and Physics of Solids., 72, 75–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Budde, M. D., & Annese, J. (2013). Quantification of anisotropy and fiber orientation in human brain histological sections. Frontiers in Integrative Neuroscience, 7, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Jiang, Y., Li, B., & Feng, X. (2012). Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mechanica Solida Sinica, 25, 483–492.

    Article  Google Scholar 

  • Cartwright, J. H. (2002). Labyrinthine turing pattern formation in the cerebral cortex. Journal of Theoretical Biology, 217(1), 97–103.

    Article  PubMed  Google Scholar 

  • Caviness Jr., V. S. (1975). Mechanical model of brain convolutional development. Science, 189(4196), 18–21.

    Article  PubMed  Google Scholar 

  • Chen, H., Guo, L., Nie, J., Zhang, T., Hu, X., & Liu, T. (2010). A dynamic skull model for simulation of cerebral cortex folding. Med Image Comput Comput Assist Interv., 13(2), 412–419.

    PubMed  Google Scholar 

  • Chen, H., Zhang, T., Guo, L., Li, K., Yu, X., Li, L., Hu, X., Han, J., Hu, X., & Liu, T. (2013). Coevolution of gyral folding and structural connection patterns in primate brains. Cerebral Cortex, 23(5), 1208–1217.

    Article  PubMed  Google Scholar 

  • Cunningham, D. J., & Horsley, V. (1892). Contribution to the surface anatomy of the cerebral hemispheres. Dublin: Royal Irish Academy.

    Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Encha-Razavi, F., & Sonigo, P. (2003). Features of the developing brain. Child's Nervous System, 19, 426–428.

    Article  PubMed  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl, B., Sereno, M., & Dale, A. (1999a). Cortical surface-based analysis-II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human brain mapping., 8, 272–284.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. Medical Imaging, IEEE Transactions on, 20, 70–80.

    Article  CAS  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B. T. T., Mohlberg, H., Amunts, K., & Zilles, K. (2008). Cortical folding patterns and predicting cytoarchitecture. Cerebral Cortex., 18, 1973–1980.

    Article  PubMed  Google Scholar 

  • Gaudillière, B., Konishi, Y., de la Iglesia, N., Gl, Y., & Bonni, A. (2004). A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron, 41(2), 229–241.

    Article  PubMed  Google Scholar 

  • Geng, G., Johnston, L. A., Yan, E., Britto, J. M., Smith, D. W., Walker, D. W., & Egan, G. F. (2009). Biomechanisms for modelling cerebral cortical folding. Medical Image Analysis, 13(6), 920–930.

    Article  PubMed  Google Scholar 

  • Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., Jenkinson, M., & Consortium, W. U.-M. H. C. P. (2013). The minimal preprocessing pipelines for the human connectome project. NeuroImage, 80, 105–124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Götz, M., & Huttner, W. B. (2005). The cell biology of neurogenesis. Nature Reviews. Molecular Cell Biology, 6, 777–788.

    Article  PubMed  Google Scholar 

  • Gratiolet, L. P. (1854). On the folding of cortical folding of the human and primates brain. Paris: Bertrand (Fre).

    Google Scholar 

  • Hilgetag, C. C., & Barbas, H. (2005). Developmental mechanics of the primate cerebral cortex. Anatomy and Embryology, 210(5–6), 411–417.

    Article  PubMed  Google Scholar 

  • Holland, M. A., Miller, K. E., & Kuhl, E. (2015). Emerging brain morphologies from axonal elongation. Annals of Biomedical Engineering, 43(7), 1640–1653.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuro Image, 62, 782–790.

    PubMed  Google Scholar 

  • Jin, L., Cai, S., & Suo, Z. (2011). Creases in soft tissues generatsed by growth. EPL, 95, 64002.

    Article  Google Scholar 

  • Konishi, Y., Stegmüller, J., Matsuda, T., Bonni, S., & Bonni, A. (2004). Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science, 303(5660), 1026–1030.

    Article  CAS  PubMed  Google Scholar 

  • Le Gros Clark, W. (1945). Deformation patterns on the cerebral cortex. In Essays on growth and form (pp. 1–23). Oxford: Oxford University Press.

    Google Scholar 

  • Leighton PA, Mitchell KJ, Goodrich LV, Lu X, Pinson K, Scherz P, Skarnes WC, Tessier-Lavigne M. (2001). Defining brain wiring patterns and mechanisms through gene trapping in mice. 410(6825):174–9.

  • Li, G., Guo, L., Nie, J., & Liu, T. (2010). An automated pipeline for cortical sulcal fundi extraction. Medical Image Analysis, 14(3), 343–359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, G., Liu, T., Ni, D., Lin, W., Gilmore, J. H., & Shen, D. (2015). Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Human Brain Mapping., 36, 5183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T., Li H., Wong K., Tarokh A., Guo L., Wong S.T. (2007). Brain tissue segmentation based on DTI data. Neuroimage. 38(1),114–23.

  • Liu T., Nie J., Tarokh A., Guo L., Wong S.T. (2008). Reconstruction of central cortical surface from brain MRI images: Method and application. Neuroimage. 40(3):991-1002.

  • Nie, J., Guo, L., Li, K., Wang, Y., Chen, G., Li, L., Chen, H., Deng, F., Jiang, X., Zhang, T., Huang, L., Faraco, C., Zhang, D., Guo, C., Yap, P. T., Hu, X., Li, G., Lv, J., Yuan, Y., Zhu, D., Han, J., Sabatinelli, D., Zhao, Q., Miller, L. S., Xu, B., Shen, P., Platt, S., Shen, D., Hu, X., & Liu, T. (2012). Axonal fiber terminations concentrate on gyri. Cerebral Cortex, 22(12), 2831–2839.

    Article  PubMed  Google Scholar 

  • Raghavan, R., Lawton, W., Ranjan, S. R., & Viswanathan, R. R. (1997). A continuum mechanics-based model for cortical growth. Journal of Theoretical Biology., 187(2), 285–296.

    Article  Google Scholar 

  • Razavi, M. J., & Wang, X. (2015c). Morphological patterns of a growing biological tube in a confined environment with contacting boundary. RSC Advances, 5, 7440–7449.

    Article  CAS  Google Scholar 

  • Razavi, M. J., Zhang, T., Liu, T., & Wang, X. (2015a). Cortical folding pattern and its consistency induced by biological growth. Scientific Reports., 5, 14477.

    Article  PubMed  Google Scholar 

  • Razavi, M. J., Zhang, T., Li, X., Liu, T., & Wang, X. (2015b). Role of mechanical factors in cortical folding development. Physical Review E, 92, 032701.

    Article  Google Scholar 

  • Régis, J., Mangin, J. F., Ochiai, T., Frouin, V., Riviére, D., Cachia, A., Tamura, M., & Samson, Y. (2005). "sulcal root" generic model: A hypothesis to overcome the variability of the human cortex folding patterns. Neurologia Medico-Chirurgica (Tokyo), 45(1), 1–17.

    Article  Google Scholar 

  • Richman, D. P., Stewart, R. M., Hutchinson, J. W., & Caviness, V. S. (1975). Mechanical model of brain convolutional development. Science, 189(4196), 18–21.

    Article  CAS  PubMed  Google Scholar 

  • Ronan, L., Voets, N., Rua, C., Alexander-Bloch, A., Hough, M., Mackay, C., Crow, T. J., James, A., Giedd, J. N., & Fletcher, P. C. (2014). Differential tangential expansion as a mechanism for cortical gyrification. Cerebral Cortex, 24(8), 2219–2228.

    Article  PubMed  Google Scholar 

  • Ségonne, F., Grimson, E., Fischl, B. (2005). Information Processing in Medical Imaging. In A genetic algorithm for the topology correction of cortical surfaces (pp. 213–259). Springer.

  • Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, R., Walcher, T., De Juan, R. C., Pilz, G. A., Cappello, S., Irmler, M., Sanz-Aquela, J. M., Beckers, J., Blum, R., Borrell, V., & Götz, M. (2013). Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell, 153(3), 535–549.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T., & Hevner, R. F. (2014). Growth and folding of the mammalian cerebral cortex: From molecules to malformations. Nature Reviews. Neuroscience, 15(4), 217–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sur, M., & Rubenstein, J. L. R. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–810.

    Article  CAS  PubMed  Google Scholar 

  • Tallinen, T., Chung, J. Y., Biggins, J. S., & Mahadevan, L. (2014). Gyrification from constrained cortical expansion. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12667–12672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro, R., & Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cerebral Cortex., 15(12), 1900–1913.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313–318.

    Article  CAS  PubMed  Google Scholar 

  • White, T., Andreasen, N., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12, 486–493.

    Article  PubMed  Google Scholar 

  • Xu, G., Bayly, P. V., & Taber, L. A. (2009). Residual stress in the adult mouse brain. Biomechanics and Modeling in Mechanobiology, 8(4), 253–262.

    Article  PubMed  Google Scholar 

  • Xu, G., Knutsen, A. K., Dikranian, K., Kroenke, C. D., Bayly, P. V., & Taber, L. A. (2010). Axons pull on the brain, but tension does not drive cortical folding. Journal of Biomechanical Engineering, 132(7), 071013.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T Zhang was supported by NSFC 31500798, NSFC 31671005. T Liu was supported by NSF CAREER Award (IIS-1149260), NIH R01 DA-033393, NIH R01 AG-042599, NSF CBET-1302089, NSF BCS-143905 and NSF DBI-1564736. X Wang and M Razavi were supported by the University of Georgia Start-up research funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianming Liu or Xianqiao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Action Editor: Abraham Zvi Snyder

Tuo Zhang and Mir Jalil Razavi contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 4264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Razavi, M.J., Chen, H. et al. Mechanisms of circumferential gyral convolution in primate brains. J Comput Neurosci 42, 217–229 (2017). https://doi.org/10.1007/s10827-017-0637-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0637-9

Keywords

Navigation