Skip to main content
Log in

Motor imagery and mental fatigue: inter-relationship and EEG based estimation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Even though it has long been felt that psychological state influences the performance of brain-computer interfaces (BCI), formal analysis to support this hypothesis has been scant. This study investigates the inter-relationship between motor imagery (MI) and mental fatigue using EEG: a. whether prolonged sequences of MI produce mental fatigue and b. whether mental fatigue affects MI EEG class separability. Eleven participants participated in the MI experiment, 5 of which quit in the middle because of experiencing high fatigue. The growth of fatigue was monitored using the Kernel Partial Least Square (KPLS) algorithm on the remaining 6 participants which shows that MI induces substantial mental fatigue. Statistical analysis of the effect of fatigue on motor imagery performance shows that high fatigue level significantly decreases MI EEG separability. Collectively, these results portray an MI-fatigue inter-connection, emphasizing the necessity of developing adaptive MI BCI by tracking mental fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://en.wikipedia.org/wiki/Moving_average

References

  • Adel, T., Wong, A., Stashuk, D. (2015). A weakly supervised learning approach based on spectral graph-theoretic grouping. arXiv:150800507.

  • Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., Müller, K.R. (2008). The Berlin brain-computer interface: accurate performance from first-session in BCI-naive subjects. IEEE Transactions on Biomedical Engineering, 55(10), 2452–2462.

    Article  PubMed  Google Scholar 

  • Borghini, G., Vecchiato, G., Toppi, J., Astolfi, L., Maglione, A., Isabella, R., Caltagirone, C., Kong, W., Wei, D., Zhou, Z., Polidori, L., Vitiello, S., Babiloni, F. (2012). Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. In IEEE 34th annual international conference on the engineering in medicine and biology society (EMBC) (pp. 6442–6445).

  • Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58–75.

    Article  Google Scholar 

  • Caldwell, J.A., Hall, K.K., Erickson, B.S. (2002). EEG data collected from helicopter pilots in flight are sufficiently sensitive to detect increased fatigue from sleep deprivation. The International Journal of Aviation Psychology, 12(1), 19–32.

    Article  Google Scholar 

  • Cao, T., Wan, F., Wong, C.M., da Cruz, J.N., Hu, Y. (2014). Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces. Biomedical Engineering Online, 13(1), 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cella, M., & Chalder, T. (2010). Measuring fatigue in clinical and community settings. Journal of Psychosomatic Research, 69(1), 17–22.

    Article  PubMed  Google Scholar 

  • Chai, R., Tran, Y., Naik, G.R., Nguyen, T.N., Ling, S.H., Craig, A., Nguyen, H.T. (2016). Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. In IEEE 38th annual international conference on the engineering in medicine and biology society (EMBC) (pp. 4654–4657).

  • Chai, R., Ling, S.H., San, P.P., Naik, G.R., Nguyen, T.N., Tran, Y., Craig, A., Nguyen, H.T. (2017a). Improving EEG-based driver fatigue classification using sparse-deep belief networks. Frontiers in Neuroscience, 11.

  • Chai, R., Naik, G.R., Nguyen, T.N., Ling, S.H., Tran, Y., Craig, A., Nguyen, H.T. (2017b). Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE Journal of Biomedical and Health Informatics, 21(3), 715–724.

    Article  PubMed  Google Scholar 

  • Charbonnier, S., Roy, R.N., Bonnet, S., Campagne, A. (2016). EEG index for control operators’ mental fatigue monitoring using interactions between brain regions. Expert Systems with Applications, 52, 91–98.

    Article  Google Scholar 

  • Cover, T.M., & Thomas, J.A. (2012). Elements of information theory. New York: Wiley.

    Google Scholar 

  • Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H. (2012). Regional brain wave activity changes associated with fatigue. Psychophysiology, 49(4), 574–582.

    Article  PubMed  Google Scholar 

  • Davies, D.L., & Bouldin, D.W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 224–227.

  • Duda, R.O., Hart, P.E., Stork, D.G. (1973). Pattern classification. New York: Wiley.

    Google Scholar 

  • Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.

    Article  Google Scholar 

  • Ekštein, K., & Pavelka, T. (2004). Entropy and entropy-based features in signal processing. In Proceedings of PhD workshop systems & control.

  • Ge, S., Wang, R., Yu, D. (2014). Classification of four-class motor imagery employing single-channel electroencephalography. PloS One, 9(6), e98,019.

    Article  CAS  Google Scholar 

  • Górski, P. (2014). Common spatial patterns in a few channel BCI interface. Journal of Theoretical and Applied Computer Science, 8(4), 56–63.

    Google Scholar 

  • Hasan, B.A.S. (2010). Adaptive methods exploiting the time structure in EEG for self-paced brain-computer interfaces. PhD thesis, University of Essex.

  • Jackson, S.A., Thomas, P.R., Marsh, H.W., Smethurst, C.J. (2001). Relationships between flow, self-concept, psychological skills, and performance. Journal of Applied Sport Psychology, 13(2), 129–153.

    Article  Google Scholar 

  • Jap, B.T., Lal, S., Fischer, P., Bekiaris, E. (2009). Using EEG spectral components to assess algorithms for detecting fatigue. Expert Systems with Applications, 36(2), 2352–2359.

    Article  Google Scholar 

  • Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage, 26(2), 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Kar, S., Bhagat, M., Routray, A. (2010). EEG signal analysis for the assessment and quantification of driver’s fatigue. Transportation Research Part F: Traffic Psychology and Behaviour, 13(5), 297–306.

    Article  Google Scholar 

  • Lal, S.K., & Craig, A. (2002). Driver fatigue: electroencephalography and psychological assessment. Psychophysiology, 39(3), 313–321.

    Article  PubMed  Google Scholar 

  • Lee, K.A., Hicks, G., Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. Psychiatry Research, 36(3), 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Zhang, C., Zheng, C. (2010). EEG-based estimation of mental fatigue by using KPCA–HMM and complexity parameters. Biomedical Signal Processing and Control, 5(2), 124–130.

    Article  Google Scholar 

  • Löster, T. (2016). Determining the optimal number of clusters in cluster analysis. In The 10th international days of statistics and economics, Prague.

  • Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N. (2009). Regularized common spatial patterns with generic learning for EEG signal classification. In IEEE annual international conference on engineering in medicine and biology society (pp. 6599–6602).

  • Mammone, N., & Morabito, F.C. (2014). Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy, 16(12), 6553–6572.

    Article  Google Scholar 

  • Montgomery, L.D., Montgomery, R.W., Guisado, R. (1995). Rheoencephalographic and electroencephalographic measures of cognitive workload: analytical procedures. Biological Psychology, 40(1–2), 143–159.

    Article  CAS  PubMed  Google Scholar 

  • Myrden, A., & Chau, T. (2015). Effects of user mental state on EEG-BCI performance. Frontiers in Human Neuroscience, 9, 308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P.D., Chouvarda, I., Koufogiannis, D., Bekiaris, E., Maglaveras, N. (2006). Indicators of sleepiness in an ambulatory EEG study of night driving. In IEEE 28th annual international conference on engineering in medicine and biology society (pp. 6201–6204).

  • Petrovic, S. (2006). A comparison between the silhouette index and the davies-bouldin index in labelling ids clusters. In Proceedings of the 11th Nordic workshop of secure IT systems (pp. 53– 64).

  • Pomer-Escher, A., Tello, R., Castillo, J., Bastos-Filho, T. (2014). Analysis of mental fatigue in motor imagery and emotional stimulation based on EEG. In XXIV Congresso Brasileiro de Engenharia Biomedica-CBEB.

  • Ramoser, H., Muller-Gerking, J., Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Romero, P., & Calvillo-Gámez, E. (2013). An embodied view of flow. Interacting with Computers, 26(6), 513–527.

    Article  Google Scholar 

  • Rosipal, R., & Trejo, L.J. (2001). Kernel partial least squares regression in reproducing kernel hilbert space. Journal of Machine Learning Research, 2, 97–123.

    Google Scholar 

  • Roy, R.N., Charbonnier, S., Bonnet, S. (2014). Detection of mental fatigue using an active BCI inspired signal processing chain. IFAC Proceedings Volumes, 47(3), 2963–2968.

    Article  Google Scholar 

  • Rozand, V., Lebon, F., Stapley, P.J., Papaxanthis, C., Lepers, R. (2016). A prolonged motor imagery session alter imagined and actual movement durations: potential implications for neurorehabilitation. Behavioural Brain Research, 297, 67–75.

    Article  PubMed  Google Scholar 

  • Talukdar, U., & Hazarika, S.M. (2016). Estimation of mental fatigue during EEG based motor imagery. In International conference on intelligent human computer interaction (pp. 122–132). Berlin: Springer.

  • Talukdar, U., & Hazarika, S.M. (2017). Designing optimal spatio-temporal filter for single trial EEG based BCI. In 3rd international conference on advances in robotics (AIR). ACM.

  • Talukdar, U., Hazarika, S.M., Gan, J.Q. (2018). A Kernel Partial least square based feature selection method. Pattern Recognition, 83, 91–106.

    Article  Google Scholar 

  • Trejo, L.J., Kubitz, K., Rosipal, R., Kochavi, R.L., Montgomery, L.D. (2015). EEG-based estimation and classification of mental fatigue. Psychology, 6(05), 572.

    Article  Google Scholar 

  • Zhang, Y., Chen, Y., Bressler, S.L., Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156(1), 238–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Zheng, C., Zhao, M., Tu, Y., Liu, J. (2011). Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic. Expert Systems with Applications, 38(3), 1859–1865.

    Article  Google Scholar 

  • Zhou, M. (2016). Hybrid feature selection method based on fisher score and genetic algorithm. Journal of Mathematical Sciences: Advances and Applications, 37, 51–78.

    Google Scholar 

Download references

Acknowledgements

Financial support from MHRD as Centre of Excellence on Machine Learning Research and Big Data Analysis is gratefully acknowledged. Assistance received from DST-UKEIRI Project: DST/INT/UK/P-91/2014 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upasana Talukdar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Sridevi Sarma

Appendix A

Appendix A

1.1 A.1 Visual Analogue Scale- Fatigue

Table 20 Visual Analogue Scale-Fatigue

1.2 A.2 Chalder Fatigue Scale

Table 21 Chalder Fatigue Scale

1.3 A.3 Fatigue Scale (FS) at the end of each run

Table 22 Fatigue Scale (FS) at the end of each run

1.4 A.4 Plot of the trends of KPLS scores and subjective scores for runs 1–8

Fig. 16
figure 16

Fatigue scores estimated through EEG vs fatigue scores self reported by participants using “fatigue scale” for runs 1–8

1.5 A.5 Plot of the trends of KPLS scores and subjective scores for runs 2–7

Fig. 17
figure 17

Fatigue scores estimated through EEG vs fatigue scores self reported by participants using “fatigue scale” on runs 2–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, U., Hazarika, S.M. & Gan, J.Q. Motor imagery and mental fatigue: inter-relationship and EEG based estimation. J Comput Neurosci 46, 55–76 (2019). https://doi.org/10.1007/s10827-018-0701-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0701-0

Keywords

Navigation