Abstract
The paper presents a hierarchical series of computational models for myelinated axonal compartments. Three classes of models are considered, either with distributed parameters (2.5D EQS–ElectroQuasi Static, 1D TL-Transmission Lines) or with lumped parameters (0D). They are systematically analyzed with both analytical and numerical approaches, the main goal being to identify the best procedure for order reduction of each case. An appropriate error estimator is proposed in order to assess the accuracy of the models. This is the foundation of a procedure able to find the simplest reduced model having an imposed precision. The most computationally efficient model from the three geometries proved to be the analytical 1D one, which is able to have accuracy less than 0.1%. By order reduction with vector fitting, a finite model is generated with a relative difference of 10− 4 for order 5. The dynamical models thus extracted allow an efficient simulation of neurons and, consequently, of neuronal circuits. In such situations, the linear models of the myelinated compartments coupled with the dynamical, non-linear models of the Ranvier nodes, neuronal body (soma) and dendritic tree give global reduced models. In order to ease the simulation of large-scale neuronal systems, the sub-models at each level, including those of myelinated compartments should have the lowest possible order. The presented procedure is a first step in achieving simulations of neural systems with accuracy control.






















Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A., Romer, R.H. (1988). Handbook of mathematical functions with formulas, graphs and mathematical tables.
Antoulas, A.C., Sorensen, D.C., Gugercin, S. (2001). A survey of model reduction methods for large-scale systems. Contemporary Mathematics, 280, 193–220.
Bărbulescu, R., Ioan, D., Ciuprina, G. (2018). Modeling the saltatory conduction in myelinated axons by order reduction. In 2018 20th international conference on neuroinformatics and computational neuroscience (ICNCN) (pp. 2059–2062).
Bărbulescu, R., Ioan, D., Ciuprina, G. (2019). Coupled macromodels for the simulation of the saltatory conduction. Scientific Bulletin Series C (under review).
Bărbulescu, R., Ioan, D., Ciurea, J. (2016). Simple 1d models for neuro-signals transmission along axons. In 2016 international conference and exposition on electrical and power engineering (EPE) (pp. 313–319): IEEE.
Berljafa, M., & Güttel, S. (2014). A rational Krylov toolbox for matlab.
Bower, J., & Beeman, D. (1998). The Book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. Interpretation of Music; 55. TELOS. https://books.google.ro/books?id=WapQAAAAMAAJ. Accessed 14 Dec 2017.
Brain Facts and Figures. (2017). https://faculty.washington.edu/chudler/facts.html#brain. Accessed 14 Dec 2017.
Brown, A.M., & Hamann, M. (2014). Computational modeling of the effects of auditory nerve dysmyelination. Frontiers in Neuroanatomy 8.
Burger, J.R. (2009). Human memory modeled with standard analog and digital circuits: inspiration for man-made computers. New Jersey: Wiley.
Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge: Cambridge University Press.
Ciuprina, G., Villena, J.F., Ioan, D., Ilievski, Z., Kula, S., ter Maten, E.J.W., Mohaghegh, K., Pulch, R., Schilders, W.H., Silveira, L.M., et al. (2015). Parameterized model order reduction. In Coupled multiscale simulation and optimization in nanoelectronics (pp. 267–359): Springer.
Clark, J., & Plonsey, R. (1966). A mathematical evaluation of the core conductor model. Biophysical Journal, 6(1), 95–112.
De Sterck, H., & Ullrich, P. (2009). Introduction to computational pdes. Course Notes for Amath 442.
Digicortex. (2017). http://www.digicortex.net/. Accessed: 2017-12-14.
Elmore, W.C. (1948). The transient response of damped linear networks with particular regard to wideband amplifiers. Journal of Applied Physics, 19(1), 55–63.
Fitzhugh, R. (1962). Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophysical Journal, 2(1), 11–21.
FitzHugh, R. (1966). Mathematical models of excitation and propagation in nerve. Publisher Unknown.
Frankenhaeuser, B., & Huxley, A. (1964). The action potential in the myelinated nerve fibre of xenopus laevis as computed on the basis of voltage clamp data. The Journal of Physiology, 171(2), 302–315.
Ganapathy, N., & Clark, J. (1987). Extracellular currents and potentials of the active myelinated nerve fiber. Biophysical Journal, 52(5), 749–761.
Goldman, L., & Albus, J.S. (1968). Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophysical Journal, 8(5), 596–607.
Gow, A., & Devaux, J. (2008). A model of tight junction function in central nervous system myelinated axons. Neuron Glia Biology, 4(4), 307–317.
Graham, B., Gillies, A., Willshaw, D. (2011). Principles of computational modelling in neuroscience.
Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers in Computational Neuroscience 4.
Gurney, K. (1997). An introduction to neural networks. Boca Raton: CRC Press.
Gustavsen, B., & Semlyen, A. (1999). Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 14(3), 1052–1061.
Halter, J.A., & Clark, J. W. Jr. (1991). A distributed-parameter model of the myelinated nerve fiber. Journal of Theoretical Biology, 148(3), 345–382.
Haykin, S. (1999). Neural networks: a comprehensive foundation. International edition. Prentice Hall. https://books.google.ro/books?id=M5abQgAACAAJ.
Heres, P.P. (2005). Robust and efficient Krylov subspace methods for model order reduction. Ph.D. thesis, Technische Universiteit Eindhoven.
Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.
Huxley, A., & Stämpeli, R. (1949). Evidence for saltatory conduction in peripheral myelinated nerve fibres. The Journal of Physiology, 108(3), 315–339.
Ioan, D. (1988). Metode pentru calculul campului electromagnetic. Separarea variabilelor. IPB.
Ioan, D., Ciuprina, G., Radulescu, M., Seebacher, E. (2006). Compact modeling and fast simulation of on-chip interconnect lines. IEEE Transactions on Magnetics, 42(4), 547–550.
Ioan, D., & Munteanu, I. (1999). Missing link rediscovered: the electromagnetic circuit element concept. JSAEM Studies in Applied Electromagnetics and Mechanics, 8, 302–320.
Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.
Izhikevich, E.M. (2007). Dynamical systems in neuroscience. Cambridge: MIT Press.
Jin, J.M. (2015). The finite element method in electromagnetics. New Jersey: Wiley.
Joucla, S., Glière, A., Yvert, B. (2014). Current approaches to model extracellular electrical neural microstimulation. Frontiers in Computational Neuroscience 8.
Keener, J., & Sneyd, J. (2010). Mathematical physiology: I: cellular physiology. Springer Science & Business Media.
Kuokkanen, P. (2012). On the origin of the extracellular potential in the nucleus laminaris of the barn owl. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I.
Lindsay, K., Ogden, J., Halliday, D., Rosenberg, J. (1999). An introduction to the principles of neuronal modelling. In Modern techniques in neuroscience research (pp. 213–306): Springer.
Lozier, D.W. (2003). Nist digital library of mathematical functions. Annals of Mathematics and Artificial Intelligence, 38(1), 105–119.
Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9), 1659–1671.
MATLAB. (2015). Balanced model truncation via square root method. The MathWorks Inc., Natick, Massachusetts.
MATLAB. (2015). Singular value decomposition. The MathWorks Inc., Natick, Massachusetts.
Moore, J., Ramon, F., Joyner, R. (1975). Axon voltage-clamp simulations. i. methods and tests. Biophysical Journal, 15(1), 11–24.
Moore, J.W., Joyner, R.W., Brill, M.H., Waxman, S.D., Najar-Joa, M. (1978). Simulations of conduction in uniform myelinated fibers. relative sensitivity to changes in nodal and internodal parameters. Biophysical Journal, 21(2), 147–160.
Morrison, A., Diesmann, M., Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459–478.
Niebur, E. (2008). Neuronal cable theory. Scholarpedia, 3(5), 2674.
Panzer, H. (2014). Model order reduction by Krylov subspace methods with global error bounds and automatic choice of parameters. Verlag Dr. Hut.
Parasuram, H., Nair, B., D’Angelo, E., Hines, M., Naldi, G., Diwakar, S. (2016). Computational modeling of single neuron extracellular electric potentials and network local field potentials using lfpsim. Frontiers in Computational Neuroscience 10.
Paugam-Moisy, H., & Bohte, S. (2012). Computing with spiking neuron networks. In Handbook of natural computing (pp. 335–376): Springer.
Rapetti, F., & Rousseaux, G. (2014). On quasi-static models hidden in Maxwell’s equations. Applied Numerical Mathematics, 79, 92–106.
Rattay, F., Potrusil, T., Wenger, C., Wise, A.K., Glueckert, R., Schrott-Fischer, A. (2013). Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons. PLoS One, 8(11), e79,256.
Robinson, P., Rennie, C., Rowe, D., O’Connor, S., Gordon, E. (2005). Multiscale brain modelling. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1457), 1043–1050.
Salimbahrami, B., & Lohmann, B. (2002). Krylov subspace methods in linear model order reduction: introduction and invariance properties. In Sci. Rep. Inst. of Automation. Citeseer.
Simulating action potential with the Hodgkin-Huxley model. (2018). https://www.comsol.com/model/simulating-action-potential-with-the-hodgkin-huxley-model-47121 https://www.comsol.com/model/simulating-action-potential-with-the-hodgkin-huxley-model-47121. Accessed: 2018-06-10.
Stephanova, D. (2001). Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre. Biological Cybernetics, 84(4), 301–308.
Stoica, P., Moses, R.L., et al. (2005). Spectral analysis of signals Vol. 452. Upper Saddle River: Pearson Prentice Hall.
Struijk, J.J., Holsheimer, J., van der Heide, G.G., Boom, H.B. (1992). Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching. IEEE Transactions on Biomedical Engineering, 39 (9), 903–912.
Timotin, A. (2004). La structure de la fibre nerveuse: Un projet optimal. Proceedings of the Romanian Academy Series A 5(1).
The Nervous System. (2017). (Structure and function) (Nursing) part 1. http://what-when-how.com/nursing/the-nervous-system-structure-and-function-nursing-part-1/ http://what-when-how.com/nursing/the-nervous-system-structure-and-function-nursing-part-1/ . Accessed: 2017-12-14.
Van Geit, W., De Schutter, E., Achard, P. (2008). Automated neuron model optimization techniques: a review. Biological Cybernetics, 99(4-5), 241–251.
Villapecellín-Cid, M.M., Medina, F., Roa, L.M. (2004). Internodal myelinated segments: delay and rgc time-domain green function model. IEEE Transactions on Biomedical Engineering, 51(2), 389–391.
Young, R. (2015). Mathematical modeling of the evolution and development of myelin. Ph.D. thesis, University of Hawaii at Manoa.
Acknowledgements
This work was supported by TD COST Action TD1307 European Model Reduction Network (EU-MORNET).
The work reported in this article was partly supported by national funds through the Portuguese “Fundação para a Ciência e a Tecnologia” (FCT) with reference UID/CEC/50021/2019 as well as project PTDC/EEI-EEE/31140/2017.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Additional information
Action Editor: Arnd Roth
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: Derivation of the analytical (2.5D) model
Appendix: Derivation of the analytical (2.5D) model
The equation div(σ gradV ) = 0, satisfied by the potential V in each homogeneous subdomain, has the following form in cylindrical coordinates:
where the axial symmetry of the function (i.e. independence on the azimuthal angle) was taken into account. In each homogeneous subdomain the potential V is a harmonic function, a solution of the Laplace equation. According to the separation of variables method (Ioan 1988), in each homogeneous subdomain the potential V is assumed to have the form:
Substituting Eq. (27) in Eq. (26) it follows that the partial differential equation can be decomposed into two ordinary linear differential equations satisfied by the two functions X and R:
where λ is a positive real constant, called constant of separation.
The solution of the first equation is:
where A and B are integration constants.
In Eq. (28) σ is piecewise constant, (σ1 for 0 < r < a and σ2 for a < r < b). Therefore, on each homogeneous subdomain, the function R is the solution of the differential equation:
which is a combination of zero order Bessel functions, with the following form for the general solution:
The parameter λ and the integration constants are derived by imposing the boundary conditions:
on terminal 2 (x = L, 0 < r < a):
$$ \left. \frac{\text{d} V}{\text{d} n}\right|_{x=L} = 0 \Rightarrow X(x)=B^{\prime}\text{ch}(\lambda(L-x)), $$V (0,x) needs to have a finite value, so in the first subdomain (0 < r < a) D has to be zero and thus:
$$ V(r,x) = CJ_{0}(\lambda x)\text{ch}(\lambda(L-x)). $$(30)After renaming the constants above, the potential has the general form:
$$ V(r,x)=\left\{\begin{array}{ll} BJ_{0}(\lambda r)\text{ch}(\lambda(L-x)), & 0{<}r{<}a, \\ (CJ_{0}(\lambda r) + DY_{0}(\lambda r))\text{ch}(\lambda(L-x)), & a{<}r{<}b. \end{array}\right. $$on the interface r = a:
$$ \begin{array}{@{}rcl@{}} &&V_{1}(a,x)=V_{2}(a,x), 0<x<L \\ &&\left. \frac{\partial\underline{V_{1}}}{\partial n}\right|_{r=a} = \beta\left. \frac{\partial \underline{V_{2}}}{\partial n}\right|_{r=a}, \beta=\frac{\sigma_{2}+j\omega\varepsilon_{2}}{\sigma_{1}+j\omega\varepsilon_{1}} = \frac{\sigma_{2}}{\sigma_{1}}, \text{for } \omega=0. \end{array} $$It follows that:
$$ \left\{\begin{array}{ll} \frac{D}{C}=\left( \frac{1-\beta}{\beta}\right)/\left( \frac{Y_{1}(\lambda a)}{J_{1}(\lambda a)} - \frac{1}{\beta}\frac{Y_{0}(\lambda a)}{J_{0}(\lambda a)}\right); \\ \frac{B}{C}=1+\frac{D}{C}\frac{Y_{0}(\lambda a)}{J_{0}(\lambda a)} = 1+\frac{(1-\beta)J_{1}(\lambda a)Y_{0}(\lambda a)}{\beta J_{0}(\lambda a)Y_{1}(\lambda a) - J_{1}(\lambda a)Y_{0}(\lambda a)}. \end{array}\right. $$on the boundary r = b:
This leads to the eigenvalues equation:
which has an infinite number of solutions λk,k = 1, 2,..., \(\infty \) and the general solution of the problem V (r,x) is obtained by superposition of all possible general forms:
Equivalently:
where R are eigenfunctions given by:
The constant Ck is computed by imposing the Neumann boundary condition at x = 0:
where h is the Heaviside function (unit step). The function f(r) can be expanded into Fourier-Bessel series of eigenfunctions:
where the Fourier coefficients Fk of this series result from the orthogonality property of the eigenfunctions:
In EC regime and with j = k this relation becomes:
The scalar product between R(λkr) and f(r) leads to the expression of Fk:
Rights and permissions
About this article
Cite this article
Ioan, D., Bărbulescu, R., Silveira, L.M. et al. Reduced order models of myelinated axonal compartments. J Comput Neurosci 47, 141–166 (2019). https://doi.org/10.1007/s10827-019-00726-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-019-00726-4