Skip to main content

Advertisement

Log in

Ring models of binocular rivalry and fusion

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

When similar visual stimuli are presented binocularly to both eyes, one perceives a fused single image. However, when the two stimuli are distinct, one does not perceive a single image; instead, one perceives binocular rivalry. That is, one perceives one of the stimulated patterns for a few seconds, then the other for few seconds, and so on – with random transitions between the two percepts. Most theoretical studies focus on rivalry, with few considering the coexistence of fusion and rivalry. Here we develop three distinct computational neuronal network models which capture binocular rivalry with realistic stochastic properties, fusion, and the hysteretic transition between. Each is a conductance-based point neuron model, which is multi-layer with two ocular dominance columns (L & R) and with an idealized “ring” architecture where the orientation preference of each neuron labels its location on a ring. In each model, the primary mechanism initiating binocular rivalry is cross-column inhibition, with firing rate adaptation governing the temporal properties of the transitions between percepts. Under stimulation by similar visual patterns, each of three models uses its own mechanism to overcome cross-column inhibition, and thus to prevent rivalry and allow the fusion of similar images: The first model uses cross-column feedforward inhibition from the opposite eye to “shut off” the cross-column feedback inhibition; the second model “turns on” a second layer of monocular neurons as a parallel pathway to the binocular neurons, rivaling out of phase with the first layer, and together these two pathways represent fusion; and the third model uses cross-column excitation to overcome the cross-column inhibition and enable fusion. Thus, each of the idealized ring models depends upon a different mechanism for fusion that might emerge as an underlying mechanism present in real visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrews, T.J., & Purves, D. (1997). Similarities in normal and binocularly rivalrous viewing. Proceedings of the National Academy of Sciences, 94(18), 9905–9908.

    Article  CAS  Google Scholar 

  • Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review, 96(1), 145.

    Article  CAS  PubMed  Google Scholar 

  • Blake, R., & Boothroyd, K. (1985). The precedence of binocular fusion over binocular rivalry. Perception & Psychophysics, 37(2), 114–124.

    Article  CAS  Google Scholar 

  • Blake, R., & Fox, R. (1974). Adaptation to invisible gratings and the site of binocular rivalry suppression. Nature, 249(5456), 488.

    Article  CAS  PubMed  Google Scholar 

  • Blake, R., & Lema, S.A. (1978). Inhibitory effect of binocular rivalry suppression is independent of orientation. Vision Research, 18(5), 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Blake, R, & O’Shea, RP. (1988). “abnormal fusion” of stereopsis and binocular rivalry. Psychological Review, 95, 151–154.

    Article  CAS  PubMed  Google Scholar 

  • Bosking, W.H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience, 17(6), 2112–2127.

    Article  CAS  PubMed  Google Scholar 

  • Brascamp, J.W., & Blake, R. (2012). Inattention abolishes binocular rivalry: perceptual evidence. Psychological Science, 23(10), 1159–1167.

    Article  PubMed  Google Scholar 

  • Brown, R.J., & Norcia, A.M. (1997). A method for investigating binocular rivalry in real-time with the steady-state vep. Vision research, 37(17), 2401–2408.

    Article  CAS  PubMed  Google Scholar 

  • Buckthought, A., Kim, J., & Wilson, H.R. (2008). Hysteresis effects in stereopsis and binocular rivalry. Vision Research, 48(6), 819–830.

    Article  PubMed  Google Scholar 

  • Cai, D., Rangan, A.V., & McLaughlin, D.W. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in v1. Proceedings of the National Academy of Sciences, 102(16), 5868–5873.

    Article  CAS  Google Scholar 

  • Cavanagh, P., & Holcombe, A.O. (2006). Successive rivalry does not occur without attention. Journal of Vision, 6(6), 818–818.

    Article  Google Scholar 

  • Chariker, L., Shapley, R., & Young, L.S. (2016). Orientation selectivity from very sparse lgn inputs in a comprehensive model of macaque v1 cortex. Journal of Neuroscience, 36(49), 12368–12384.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, B.P., Chow, C.C., & Vattikuti, S. (2019). Dynamical modeling of multi-scale variability in neuronal competition. Communications Biology, 2(1), 1–11.

    Article  Google Scholar 

  • Della Porta, G. (1593). De refractione optices parte: libri novem... Ex officina Horatii Salviani, apud Jo. Jacobum Carlinum, & Antonium Pacem.

  • Dieter, K.C., Brascamp, J., Tadin, D., & Blake, R. (2016). Does visual attention drive the dynamics of bistable perception? Attention, Perception, & Psychophysics, 78(7), 1861–1873.

    Article  Google Scholar 

  • Dutour, E.F. (1760). Discussion d’une question d’optique [discussion on a question of optics]. Mémoires de Mathématique et de physique présentés par Divers Savants, 3, 514–530.

    Google Scholar 

  • Gail, A., Brinksmeyer, H.J., & Eckhorn, R. (2004). Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. Cerebral Cortex, 14(3), 300–313.

    Article  PubMed  Google Scholar 

  • Homayoun, H., & Moghaddam, B. (2007). Nmda receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience, 27(43), 11496–11500.

    Article  CAS  PubMed  Google Scholar 

  • Huntley, G.W., Vickers, J., Janssen, W., Brose, N., Heinemann, S., & Morrison, J. (1994). Distribution and synaptic localization of immunocytochemically identified nmda receptor subunit proteins in sensory-motor and visual cortices of monkey and human. Journal of Neuroscience, 14(6), 3603–3619.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R., & Bühl, E. (1993). Basket-like interneurones in layer ii of the entorhinal cortex exhibit a powerful nmda-mediated synaptic excitation. Neuroscience Letters, 149(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, L., & Arditi, A. (1976). The fusion illusion. Vision Research, 16(5), 535–543.

    Article  CAS  PubMed  Google Scholar 

  • Laing, C.R., & Chow, C.C. (2002). A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 12(1), 39–53.

    Article  PubMed  Google Scholar 

  • Legge, G.E., & Rubin, G.S. (1981). Binocular interactions in suprathreshold contrast perception. Perception & Psychophysics, 30(1), 49–61.

    Article  CAS  Google Scholar 

  • Leopold, D.A., & Logothetis, N.K. (1996). Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature, 379(6565), 549.

    Article  CAS  PubMed  Google Scholar 

  • Levelt, W.J. (1965). On binocular rivalry. PhD thesis, Van Gorcum Assen.

  • Li, H.H., Rankin, J., Rinzel, J., Carrasco, M., & Heeger, D.J. (2017). Attention model of binocular rivalry. Proceedings of the National Academy of Sciences, 114(30), E6192–E6201.

    Article  CAS  Google Scholar 

  • Ling, S., & Blake, R. (2012). Normalization regulates competition for visual awareness. Neuron, 75(3), 531–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Tyler, C.W., & Schor, C.M. (1992). Failure of rivalry at low contrast: evidence of a suprathreshold binocular summation process. Vision Research, 32(8), 1471–1479.

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri, G., & Dingledine, R. (2002). Control of feedforward dendritic inhibition by nmda receptor-dependent spike timing in hippocampal interneurons. Journal of Neuroscience, 22(13), 5462–5472.

    Article  CAS  PubMed  Google Scholar 

  • MATLAB. (2018). version 9.4.0 (R2018a). Natick: The MathWorks Inc.,.

    Google Scholar 

  • Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98(3), 1125–1139.

    Article  PubMed  Google Scholar 

  • Nelson, J.I. (1975). Globality and stereoscopic fusion in binocular vision. Journal of Theoretical Biology, 49 (1), 1–88.

    Article  CAS  PubMed  Google Scholar 

  • O’Shea, R.P. (1987). Chronometric analysis supports fusion rather than suppression theory of binocular vision. Vision Research, 27(5), 781–791.

    Article  PubMed  Google Scholar 

  • O’Shea, R.P., & Crassini, B. (1981). The sensitivity of binocular rivalry suppression to changes in orientation assessed by reaction-time and forced-choice techniques. Perception, 10(3), 283–293.

    Article  PubMed  Google Scholar 

  • Polonsky, A., Blake, R., Braun, J., & Heeger, D.J. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3(11), 1153.

    Article  CAS  PubMed  Google Scholar 

  • Said, C.P., & Heeger, D.J. (2013). A model of binocular rivalry and cross-orientation suppression. PLoS Computational Biology, 9(3), e1002991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.

    Article  PubMed  Google Scholar 

  • Stimberg, M., Goodman, D.F., Benichoux, V., & Brette, R. (2013). Brian 2-the second coming: spiking neural network simulation in python with code generation. BMC Neuroscience, 14(1), P38.

    Article  PubMed Central  Google Scholar 

  • Tong, F., & Engel, S.A. (2001). Interocular rivalry revealed in the human cortical blind-spot representation. Nature, 411(6834), 195.

    Article  CAS  PubMed  Google Scholar 

  • Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10(11), 502–511.

    Article  PubMed  Google Scholar 

  • Wade, N.J. (1998). A natural history of vision. MIT press.

  • Wang, H.X., & Gao, W.J. (2009). Cell type-specific development of nmda receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology, 34(8), 2028.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H.R. (2003). Computational evidence for a rivalry hierarchy in vision. Proceedings of the National Academy of Sciences, 100(24), 14499–14503.

    Article  CAS  Google Scholar 

  • Wilson, H.R. (2017). Binocular contrast, stereopsis, and rivalry: toward a dynamical synthesis. Vision research, 140, 89–95.

    Article  PubMed  Google Scholar 

  • Wolfe, J.M. (1986). Stereopsis and binocular rivalry. Psychological Review, 93(3), 269.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, JM. (1988). Parallel ideas about stereopsis and binocular rivalry: a reply to blake and o’shea (1988). Psychological review.

  • Wong-Riley, M., Anderson, B., Liebl, W., & Huang, Z. (1998). Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with na+ k+ atpase, nadph-diaphorase, nitric oxide synthase, and n-methyl-d-aspartate receptor subunit 1. Neuroscience, 83(4), 1025–1045.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Han, C., Chen, M., Li, P., Zhu, S., Fang, Y., Hu, J., Ma, H., & Lu, H.D. (2016). Rivalry-like neural activity in primary visual cortex in anesthetized monkeys. Journal of Neuroscience, 36 (11), 3231–3242.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Jamison, K., Engel, S., He, B., & He, S. (2011). Binocular rivalry requires visual attention. Neuron, 71(2), 362–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, D., Rangan, A.V., McLaughlin, D.W., & Cai, D. (2013). Spatiotemporal dynamics of neuronal population response in the primary visual cortex. Proceedings of the National Academy of Sciences, 110(23), 9517–9522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank David Heeger and John Rinzel for very helpful and informative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. McLaughlin.

Ethics declarations

Conflict of interests

The authors have no conflict of interests.

Additional information

Action Editor: A. Borst

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Dai, W. & McLaughlin, D.W. Ring models of binocular rivalry and fusion. J Comput Neurosci 48, 193–211 (2020). https://doi.org/10.1007/s10827-020-00744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00744-7

Keywords

Navigation