Abstract
Voluntary rapid eye movements (saccades) redirect the fovea toward objects of visual interest. The saccadic system can be considered as a dual-mode system: in one mode the eye is fixating, in the other it is making a saccade. In this review, we consider two examples of dysfunctional saccades, interrupted saccades in late-onset Tay-Sachs disease and gaze-position dependent opsoclonus after concussion, which fail to properly shift between fixation and saccade modes. Insights and benefits gained from bi-directional collaborative exchange between clinical and basic scientists are emphasized. In the case of interrupted saccades, existing mathematical models were sufficiently detailed to provide support for the cause of interrupted saccades. In the case of gaze-position dependent opsoclonus, existing models could not explain the behavior, but further development provided a reasonable hypothesis for the mechanism underlying the behavior. Collaboration between clinical and basic science is a rich source of progress for developing biologically plausible models and understanding neurological disease. Approaching a clinical problem with a specific hypothesis (model) in mind often prompts new experimental tests and provides insights into basic mechanisms.
Similar content being viewed by others
Data availability and material
The authors agree to make data beyond that included in the publication accessible if requested.
Code availability
The authors agree to make code available if requested.
References
Bertolini, G., Tarnutzer, A. A., Olasagasti, I., Khojasteh, E., Weber, K. P., Bockisch, C. J., Straumann, D., & Marti, S. (2013). Gaze holding in healthy subjects. PLoS One, 8, e61389.
Bockisch, C. J., Khojasteh, E., Straumann, D., & Hegemann, S. C. (2013). Eye position dependency of nystagmus during constant vestibular stimulation. Experimental Brain Research, 226, 175–182.
Büttner-Ennever, J. A., Cohen, B., Pause, M., & Fries, W. (1988). Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. The Journal of Comparative Neurology, 267, 307–321.
Chan, W., & Galiana, H. L. (2010). A nonlinear model of the neural integrator improves detection of deficits in the human VOR. IEEE Transactions on Biomedical Engineering, 57, 1012–1023.
Chan, W. W., & Galiana, H. L. (2005). Integrator function in the oculomotor system is dependent on sensory context. Journal of Neurophysiology, 93, 3709–3717.
Chan, W. W., & Galiana, H. L. (2008). Modeling the nonlinear context dependency of the neural integrator in the vestibuloocular reflex. IEEE Transactions on Biomedical Engineering, 55, 1946–1955.
Crawford, J. D., & Vilis, T. (1993). Modularity and parallel processing in the oculomotor integrator. Experimental Brain Research, 96, 443–456.
Cullen, K. E., & Guitton, D. (1997). Analysis of primate IBN spike trains using system identification techniques. II. Relationship to gaze, eye, and head movement dynamics during head-free gaze shifts. Journal of Neurophysiology 78: 3283–3306.
Daye, P. M., Optican, L. M., Roze, E., Gaymard, B., & Pouget, P. (2013). Neuromimetic model of saccades for localizing deficits in an atypical eye-movement pathology. Journal of Translational Medicine, 11, 125.
Evinger, C., Kaneko, C. R., & Fuchs, A. F. (1982). Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. Journal of Neurophysiology, 47, 827–844.
Hain, T. C., Zee, D. S., & Mordes, M. (1986). Blink-induced saccadic oscillations. Annals of Neurology, 19, 299–301.
Heitger, M. H., Anderson, T. J., & Jones, R. D. (2002). Saccade sequences as markers for cerebral dysfunction following mild closed head injury. Progress in Brain Research, 140, 433–448.
Heitger, M. H., Anderson, T. J., Jones, R. D., Dalrymple-Alford, J. C., Frampton, C. M., & Ardagh, M. W. (2004). Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain, 127, 575–590.
Helmchen C, Rambold H, Sprenger A, Erdmann C, Binkofski F, and f MRIsan fMRI study. (2003). Cerebellar activation in opsoclonus. Neurology, 61, 412–415.
Helmchen, C., Straube, A., & Büttner, U. (1994). Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Experimental Brain Research, 98, 474–482.
Horn, A. K., Büttner-Ennever, J. A., Suzuki, Y., & Henn, V. (1995). Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. The Journal of Comparative Neurology, 359, 350–363.
Horn, A. K., Büttner-Ennever, J. A., Wahle, P., & Reichenberger, I. (1994). Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. Journal of Neuroscience, 14, 2032–2046.
Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. The Journal of Comparative Neurology, 253, 415–439.
Kaneko, C. R. (1996). Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. Journal of Neurophysiology, 75, 2229–2242.
Keller, E. L., Gandhi, N. J., & Shieh, J. M. (1996). Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Visual Neuroscience, 13, 1059–1067.
Keller, E. L., Gandhi, N. J., & Vijay, S. S. (2000). Activity in deep intermediate layer collicular neurons during interrupted saccades. Experimental Brain Research, 130, 227–237.
Keller, E. L., & Missal, M. (2003). Shared brainstem pathways for saccades and smooth-pursuit eye movements. Annals of the New York Academy of Sciences, 1004, 29–39.
Kepski, A. (1983). Clinical aspects and prognosis in cerebellar concussion syndromes. Neurologia i Neurochirurgia Polska, 17, 239–243.
Khojasteh, E., Bockisch, C. J., Straumann, D., & Hegemann, S. C. (2013). A dynamic model for eye-position-dependence of spontaneous nystagmus in acute unilateral vestibular deficit (Alexander’s Law). European Journal of Neuroscience, 37, 141–149.
Lefevre, P., Quaia, C., & Optican, L. M. (1998). Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks, 11, 1175–1190.
Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements. Oxford ; New York: Oxford University Press, p. xx, 1109 pages.
Meabon, J. S., Huber, B. R., Cross, D. J., Richards, T. L., Minoshima, S., Pagulayan, K., ... & Cook, D. G. (2016). Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med 8: 321ra326.
Missal, M., & Heinen, S. J. (2017). Stopping smooth pursuit. Philosophical Transactions of the Royal Society B: Biological Sciences 372.
Missal, M., & Keller, E. L. (2002). Common inhibitory mechanism for saccades and smooth-pursuit eye movements. Journal of Neurophysiology, 88, 1880–1892.
Miura, K., & Optican, L. M. (2006). Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. Journal of Computational Neuroscience, 20, 25–41.
Ohtsuka, K., & Noda, H. (1995). Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. Journal of Neurophysiology, 74, 1828–1840.
Optican, L. M., & Pretegiani, E. (2017). A GABAergic Dysfunction in the Olivary-Cerebellar-Brainstem Network May Cause Eye Oscillations and Body Tremor. II. Model Simulations of Saccadic Eye Oscillations. Frontiers of Neurology 8: 372.
Optican, L. M., & Quaia, C. (2002). Distributed model of collicular and cerebellar function during saccades. Annals of the New York Academy of Sciences, 956, 164–177.
Optican, L. M., Rucker, J. C., Keller, E. L., & Leigh, R. J. (2008). Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease. Progress in Brain Research, 171, 567–570.
Optican, L. M., Rucker, J. C., Rizzo, J. R., & Hudson, T. E. (2019). Modeling gaze position-dependent opsoclonus. Progress in Brain Research, 249, 35–61.
Pretegiani, E., Rosini, F., Rocchi, R., Ginanneschi, F., Vinciguerra, C., Optican, L. M., & Rufa, A. (2017). GABAAergic dysfunction in the olivary-cerebellar-brainstem network may cause eye oscillations and body tremor. Clinical Neurophysiology, 128, 408–410.
Quaia, C., Lefevre, P., & Optican, L. M. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology, 82, 999–1018.
Ramat, S., Leigh, R. J., Zee, D. S., & Optican, L. M. (2005). Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Experimental Brain Research, 160, 89–106.
Ramat, S., Leigh, R. J., Zee, D. S., & Optican, L. M. (2007). What clinical disorders tell us about the neural control of saccadic eye movements. Brain, 130, 10–35.
Ramat, S., Leigh, R. J., Zee, D. S., Shaikh, A. G., & Optican, L. M. (2008). Applying saccade models to account for oscillations. Progress in Brain Research, 171, 123–130.
Rivaud, S., Muri, R. M., Gaymard, B., Vermersch, A. I., & Pierrot-Deseilligny, C. (1994). Eye movement disorders after frontal eye field lesions in humans. Experimental Brain Research, 102, 110–120.
Rizzo, J. R., Hudson, T. E., Sequeira, A. J., Dai, W., Chaudhry, Y., Martone, J., Zee, D. S., Optican, L. M., Balcer, L. J., Galetta, S. L., & Rucker, J. C. (2019). Eye position-dependent opsoclonus in mild traumatic brain injury. Progress in Brain Research, 249, 65–78.
Rucker, J. C., Leigh, R. J., Optican, L. M., Keller, E. L., & Bu Ttner-Ennever, J. A. (2008). Ocular motor anatomy in a case of interrupted saccades. Progress in Brain Research, 171, 563–566.
Rucker, J. C., Shapiro, B. E., Han, Y. H., Kumar, A. N., Garbutt, S., Keller, E. L., & Leigh, R. J. (2004). Neuro-ophthalmology of late-onset Tay-Sachs disease (LOTS). Neurology, 63, 1918–1926.
Rucker, J. C., Ying, S. H., Moore, W., Optican, L. M., Büttner-Ennever, J., Keller, E. L., Shapiro, B. E., & Leigh, R. J. (2011). Do brainstem omnipause neurons terminate saccades? Annals of the New York Academy of Sciences, 1233, 48–57.
Segraves, M. A. (1992). Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. Journal of Neurophysiology, 68, 1967–1985.
Shinoda, Y., Sugiuchi, Y., Takahashi, M., & Izawa, Y. (2011). Neural substrate for suppression of omnipause neurons at the onset of saccades. Annals of the New York Academy of Sciences, 1233, 100–106.
Shook, B. L., Schlag-Rey, M., & Schlag, J. (1988). Direct projection from the supplementary eye field to the nucleus raphe interpositus. Experimental Brain Research, 73, 215–218.
Shook, B. L., Schlag-Rey, M., & Schlag, J. (1990). Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. The Journal of Comparative Neurology 301: 618–642.
Soetedjo, R., Kaneko, C. R., & Fuchs, A. F. (2002). Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. Journal of Neurophysiology, 87, 679–695.
Stanton, GB., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. The Journal of Comparative Neurology 271: 493–506.
Strassman, A., Highstein. S. M., & McCrea, R. A. (1986). Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. The Journal of Comparative Neurology 249: 358–380.
Thier, P., Dicke, P. W., Haas, R., & Barash, S. (2000). Encoding of movement time by populations of cerebellar Purkinje cells. Nature, 405, 72–76.
Thier, P., Dicke, P. W., Haas, R., Thielert, C. D., & Catz, N. (2002). The role of the oculomotor vermis in the control of saccadic eye movements. Annals of the New York Academy of Sciences, 978, 50–62.
Tusa, R. J., Zee, D. S., & Herdman, S. J. (1986). Effect of unilateral cerebral cortical lesions on ocular motor behavior in monkeys: saccades and quick phases. Journal of Neurophysiology, 56, 1590–1625.
Van Gisbergen, J. A., Robinson, D. A., & Gielen, S. (1981). A quantitative analysis of generation of saccadic eye movements by burst neurons. Journal of Neurophysiology, 45, 417–442.
Van Horn, M. R., Sylvestre, P. A., & Cullen, K. E. (2008). The brain stem saccadic burst generator encodes gaze in three-dimensional space. Journal of Neurophysiology, 99, 2602–2616.
Waitzman, D. M., Silakov, V. L., & Cohen, B. (1996). Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. Journal of Neurophysiology, 75, 1546–1572.
Yoshida, K., Iwamoto, Y., Chimoto, S., & Shimazu, H. (1999). Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. Journal of Neurophysiology, 82, 1198–1208.
Zee, D. S., & Robinson, D. A. (1979). A hypothetical explanation of saccadic oscillations. Annals of Neurology, 5, 405–414.
Funding
This research was supported, in part, by the Intramural Research Program of the NEI, NIH.
Author information
Authors and Affiliations
Contributions
Conception and design of the studies reviewed: JCR, RJL, JAB, AH, JRR, TEH, LMO.
Acquisition and analysis of data: JCR, RJL, JAB, AH, JRR, TEH, LMO.
Substantial manuscript drafting: JCR, LMO.
Editing and approval of final manuscript: JCR, RJL, JAB, AH, JRR, TEH, LMO.
Corresponding author
Ethics declarations
Ethics approval
All research protocols were approved by the NYU Institutional Review Board.
Consent to participate
Written informed consent for participation was obtained from each participant.
Consent for publication
Written informed consent for publication was obtained from each participant. No private health information is included for publication.
Conflict of interest
No author has pertinent disclosures.
Additional information
Action Editor: Aasef G. Shaikh
This article belongs to the Topical Collection: Vision and Action
Guest Editors: Aasef Shaikh and Jeffrey Shall
Rights and permissions
About this article
Cite this article
Rucker, J.C., Rizzo, JR., Hudson, T.E. et al. Dysfunctional mode switching between fixation and saccades: collaborative insights into two unusual clinical disorders. J Comput Neurosci 49, 283–293 (2021). https://doi.org/10.1007/s10827-021-00785-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-021-00785-6