Abstract
In vitro studies have shown that hippocampal pyramidal neurons employ a mechanism similar to stochastic resonance (SR) to enhance the detection and transmission of weak stimuli generated at distal synapses. To support the experimental findings from the perspective of multicompartment model analysis, this paper aimed to elucidate the phenomenon of SR in a noisy two-compartment hippocampal pyramidal neuron model, which was a variant of the Pinsky-Rinzel neuron model with smooth activation functions and a hyperpolarization-activated cation current. With a bifurcation analysis of the model, we demonstrated the underlying dynamical structure responsible for the occurrence of SR. Furthermore, using a stochastically generated biphasic pulse train and broadband noise generated by the Orenstein-Uhlenbeck process as noise perturbation, both SR and suprathreshold SR were observed and quantified. Spectral analysis revealed that the distribution of spectral power under noise perturbations, in addition to inherent neurodynamics, is the main factor affecting SR behavior. The research results suggested that noise enhances the transmission of weak stimuli associated with elongated dendritic structures of hippocampal pyramidal neurons, thereby providing support for related laboratory findings.














Similar content being viewed by others
Data availability statement
The model code and graphics data supporting the main results of the current work will be archived at GitHub repository (https://github.com/BilalGhori/Stochastic-Resonance).
References
Andersen, P. (1990). Synaptic integration in hippocampal CA1 pyramids. Progress in Brain Research, 83, 215–222. https://doi.org/10.1016/S0079-6123(08)61251-0
Amarillo, Y., Mato, G., & Nadal, M. (2015). Analysis of the role of low threshold currents IT and Ih in intrinsic delta oscillations of the thalamocortical neurons. Frontiers in Computational Neuroscience, 9, 52. https://doi.org/10.3389/fncom.2015.00052
Atherton, L. A., Prince, L. Y., & Tsaneva-Atanasova, K. (2016). Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. Journal of Computational Neuroscience, 41, 91–106. https://doi.org/10.1007/s10827-016-0606-8
Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics a: Mathematical and General, 14(11), L453.
Berger, T., Larkum, M. E., & Lüscher, H. R. (2001). High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. Journal of Neurophysiology, 85(2), 855–868. https://doi.org/10.1152/jn.2001.85.2.855
Berger, T., Senn, W., & Lüscher, H. R. (2003). Hyperpolarization-Activated Current Ih Disconnects Somatic and Dendritic Spike Initiation Zones in Layer V Pyramidal Neurons. Journal of Neurophysiology, 90(4), 2428–2437. https://doi.org/10.1152/jn.2001.85.2.855
Bahl, A., Stemmler, M. B., Herz, A. V. M., & Roth, A. (2012). Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. Journal of Neuroscience Methods, 210, 22–34. https://doi.org/10.1016/j.jneumeth.2012.04.006
Beatriz, H., Amirsaman, S., Geoffrey, F. W., Jeffrey, D. S., & Jorge, J. R. (2020). A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation. The Journal of Neuroscience, 40(44), 8513–8529. https://doi.org/10.1523/JNEUROSCI.0221-20.2020
Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995). Aperiodic stochastic resonance in excitable systems. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 52(4), 3321–3324. https://doi.org/10.1103/PhysRevE.52.R3321
Collins, J. J., Imhoff, T. T., & Grigg, P. (1996). Noise enhanced information transmission in rat SA1 cutaneous mechanoreceptors via a periodic stochastic resonance. Journal of Neurophysiology, 76, 642–645. https://doi.org/10.1152/jn.1996.76.1.642
Cai, Z., Feng, Z., Guo, Z., Zhou, W., Wang, Z., & Wei, X. (2017). Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High-Frequency Stimulation in Rat Hippocampus. Frontiers in Computational Neuroscience, 11, 563. https://doi.org/10.3389/fnins.2017.00563
Duan, F., Chapeau-Blondeau, F., & Abbott, D. (2016). Encoding efficiency of suprathreshold stochastic resonance on stimulus-specific information. Physics Letters A, 380(1–2), 33–39. https://doi.org/10.1016/j.physleta.2015.09.043
Dyhrfjeld-Johnsen, J., & Morgan, R. J. (2008). Upregulated H-current in hyperexcitable CA1 dendrites after febrile seizures. Frontiers in Cellular Neuroscience, 2, 2. https://doi.org/10.3389/neuro.03.002.2008
Durrant, S., Kang, Y., Stocks, N. G., & Feng, J. (2011). Suprathreshold stochastic resonance in neural processing tuned by correlation. Physical Review E, 84(1), 011923. https://doi.org/10.1103/PhysRevE.84.011923
Daqing, G., Matjaz, P., Yangsong, Z., Peng, X., & Dezhong, Y. (2017). Frequency-difference-dependent stochastic resonance in neural systems. Physical Review E, 96, 022415. https://doi.org/10.1103/PhysRevE.96.022415
Douglass, J. K., Wilkens, L., Pantazelou, E., & Moss, F. (1993). Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365, 337–340. https://doi.org/10.1038/365337a0
Danziger, Z., & Grill, W. M. (2015). A neuron model of stochastic resonance using rectangular pulse trains. Journal of Computational Neuroscience, 38, 53–66. https://doi.org/10.1007/s10827-014-0526-4
Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics Philadelphia.
Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303. https://doi.org/10.1038/nrn2258
Fu, Y., Kang, Y., & Xie, Y. (2018). Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction. Frontiers in Computational Neuroscience, 12, 6. https://doi.org/10.3389/fncom.2018.00006
Fu, Y., Kang, Y., & Chen, G. R. (2020). Stochastic resonance-based visual perception using spiking neural networks. Frontiers in Computational Neuroscience, 14, 24. https://doi.org/10.3389/fncom.2020.00024
Gao, F. Y., Kang, Y., Chen, X., & Chen, G. R. (2018). Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input. Physical Review E, 97, 052142. https://doi.org/10.1103/PhysRevE.97.052142
Gammaitoni, L., Hanggi, P., Jung, P., & Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70(1), 223–287. https://doi.org/10.1103/RevModPhys.70.223
Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. Journal of Physiology, 568, 69–82. https://doi.org/10.1113/jphysiol.2005.086793
Gasparini, S., & DiFrancesco, D. (1999). Action of serotonin on the hyperpolarization-activated cation current (Ih) in rat CA1 hippocampal neurons. European Journal of Neuroscience, 11, 3093–3100. https://doi.org/10.1046/j.1460-9568.1999.00728.x
Golomb, D., Yue, C., & Yaari, Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: Combined experimental and modeling study. Journal of Neurophysiology, 96(4), 1912–1926. https://doi.org/10.1152/jn.00205.2006
Guo, Y., & Tan, J. (2006). Suprathreshold stochastic resonance in multilevel threshold system driven by multiplicative and additive noises. Communication in Nonlinear Science and Numerical Simulation, 18(10), 2852–2858. https://doi.org/10.1016/j.cnsns.2013.02.006
Hodgkin, A. L., & Huxley, A. F. (1952). A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9(6), 1179–1209. https://doi.org/10.1162/neco.1997.9.6.1179
Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology, 7, e1002107. https://doi.org/10.1371/journal.pcbi.1002107
Hahn, P. J., & Durand, D. M. (2001). Bistability dynamics in simulations of neural activity in high-extracellular potassium conditions. Journal of Computational Neuroscience, 11, 5–18. https://doi.org/10.1023/A:1011250329341
Kang, Y., Liu, R., & Mao, X. (2020). Aperiodic stochastic resonance in neural information processing with Gaussian colored noise. Cognitive Neurodynamics, 15, 517–532. https://doi.org/10.1007/s11571-020-09632-3
Knoblich, U., Siegle, J. H., Pritchett, D. L., & Moore, C. I. (2010). What do we gain from gamma? Local dynamic gain modulation drives enhanced efficacy and efficiency of signal transmission. Frontiers in Human Neuroscience, 4, 185. https://doi.org/10.3389/fnhum.2010.00185
Kole, M. H., Hallermann, S., & Stuart, G. J. (2006). Single Ih channels in pyramidal neurons dendrites: properties, distribution, and impact on action potential output. The Journal of Neuroscience, 26, 1677–1687. https://doi.org/10.1523/JNEUROSCI.3664-05.2006
Kepecs, A., & Wang, X. J. (2000). Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing, 32, 181–187. https://doi.org/10.1016/S0925-2312(00)00162-4
Kloeden, P. E., & Eckhard, P. (2013). Numerical solution of stochastic differential equations. Vol. 23. Springer Science & Business Media.
Lippert, A., & Booth, V. (2009). Understanding effects on excitability of simulated I (h) modulation in simple neuronal models. Biological Cybernetics, 101, 297. https://doi.org/10.1007/s00422-009-0337-2
Liu, R. N., & Kang, Y. (2018). Stochastic resonance in underdamped periodic potential systems with alpha stable Levy noise. Physics Letters A, 382(25), 1656–1664. https://doi.org/10.1007/s11571-020-09632-3
Longtin, A. (1993). Stochastic resonance in neuron models. Journal of Statistical Physics, 70(1–2), 309–327. https://doi.org/10.1007/Bf01053970
Lee, S. G., & Kim, S. (1999). Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Physical Review E, 60(1), 826–830. https://doi.org/10.1103/PhysRevE.60.826
Lindner, B., Garcia-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports Review Section of Physics Letter, 392(6), 321–424. https://doi.org/10.1016/j.physrep.2003.10.015
Larkum, M. E., Senn, W., & Lüscher, H. R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Journal of Physiology, 14(10), 1059–1070. https://doi.org/10.1093/cercor/bhh065
Larkum, M. E., Waters, J., Sakmann, B., & Helmchen, F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. Journal of Neuroscience, 27(34), 8999–9008. https://doi.org/10.1523/JNEUROSCI.1717-07.2007
Levin, J. E., & Miller, J. P. (1996). Broadband neural encoding in the cricket cereal sensory system enhanced by the stochastic resonance. Nature, 380, 165–168. https://doi.org/10.1038/380165a0
Migliore, M., Cook, E. P., Jaffe, D. B., Turner, D. A., & Johnston, D. (1995). Computer-simulations of morphologically reconstructed CA3 hippocampal neurons. Journal of Neurophysiology, 73(3), 1157–1168. https://doi.org/10.1152/jn.1995.73.3.1157
Mitra, P., & Bokil, H. (2008). Observed brain dynamics. Oxford University Press.
McDonnell, M. D., & Abbott, D. (2009). What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Computational Biology, 5(5), e1000348. https://doi.org/10.1371/journal.pcbi.1000348
Mäki-Marttunen, T., Halnes, G., Devor, A., Metzner, C., Andreassen, O. A., & Einevoll, G. T. (2018). A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells. Journal of Neuroscience Methods, 293, 264–283. https://doi.org/10.1016/j.jneumeth.2017.10.007
Mark, T. H., Jaffrey, C. M., & Stephen, R. W. (2015). Distribution and Function of HCN Channels in the Apical Dendritic Tuft of Neocortical Pyramidal Neurons. The Journal of Neuroscience, 35(3), 1024–1037. https://doi.org/10.1523/JNEUROSCI.2813-14.2015
Nakamura, O., & Tateno, K. (2019). Random pulse induced synchronization and resonance in uncoupled non-identical neuron models. Cognitive Neurodynamics, 13(3), 303–312. https://doi.org/10.1007/s11571-018-09518-5
Onorato, I., D’Alessandro, G., DiCastro, M. A., Renzi, M., & Dobrowolny, G. (2016). Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance. PLoS ONE, 11(8), e0160950. https://doi.org/10.1371/journal.pone.0160950
O’Keefe, J., & Nadal, L. (1978). The hippocampus as a cognitive map. Clarendon Press.
Peng, C. H., Chen, J. J., Groat, W. C., & Cheng, C. L. (2006). External Urethral Sphincter Activity in a Rat Model of Pudendal Nerve Injury. Neurology and Urodynamics, 25, 388–396. https://doi.org/10.1002/nau.20229
Pape, H. C. (1996). Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Annual Review of Physiology, 58, 299–327. https://doi.org/10.1146/annurev.ph.58.030196.001503
Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1(1–2), 39–60. https://doi.org/10.1007/BF00961439
Percival, D. B., & Walden, W. T. (1993). Spectral Analysis for Physical Applications: Multitaperand Conventional Univariate Techniques. Cambridge University Press.
Raus, B. S., Magó, Á., Ahmadi, M., Kis, N., Varga-Németh, Z., Lőrincz, A., & Makara, J. K. (2019). Diverse synaptic and dendritic mechanisms of complex spike burst generation in hippocampal CA3 pyramidal cells. Nature Communications, 10(1), 1859. https://doi.org/10.1038/s41467-019-09767-w
Rosenkranz, J. A., & Johnston, D. (2006). Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. Journal of Neuroscience, 26, 3229–3244. https://doi.org/10.1523/JNEUROSCI.4333-05.2006
Samira, R. A., Sajad, M. A. N., & Reza, G. (2020). Epilepsy control using a fixed time integral super twisting sliding mode control for Pinsky-Rinzel pyramidal model through ion channels with an optogenetic method. Computer Methods and Programs in Biomedicine, 195, 0169–2607. https://doi.org/10.1016/j.cmpb.2020.105665
Slomianka, L., Amrein, I., & Knuesel, I. (2011). Hippocampal pyramidal cells: The reemergence of cortical lamination. Brain Structure and Function, 216, 30. https://doi.org/10.1007/s00429-011-0322-0
Spruston, N., Jaffe, D. B., Williams, S. H., & Johnston, D. (1993). Voltage- and space-clamped errors associated with the measurement of electronically remote synaptic events. Journal of Neurophysiology, 70, 781–802. https://doi.org/10.1152/jn.1993.70.2.781
Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: Noise or part of the signal? Nature Reviews Neuroscience, 6(5), 389–397. https://doi.org/10.1038/nrn1668
Stacey, W. C., & Durand, D. M. (2000). Stochastic resonance improves signal detection in hippocampal CA1 neurons. Journal of Neurophysiology, 83, 1394–1402. https://doi.org/10.1152/jn.2000.83.3.1394
Suzuki, M., & Larkum, M. E. (2017). Dendritic calcium spikes are clearly detectable at the cortical surfaces. Nature Communication., 8, 276. https://doi.org/10.1038/s41467-017-00282-4
Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 88, 3143–3154. https://doi.org/10.1152/jn.00046.2003
Stocks, N. G. (2001). Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance. Physical Review E, 63, 041114. https://doi.org/10.1103/PhysRevE.63.041114
Traub, R. D., Wong, R. K. S., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66(2), 635–650. https://doi.org/10.1152/jn.1991.66.2.635
Tiwari, I., Phogat, R., Parmananda, P., Ocampo-Espindola, J. L., & Rivera, M. (2016). Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell. Physical Review E, 94(2), 022210. https://doi.org/10.1103/PhysRevE.72.030102
Wu, J., Jin, M., & Qiao, Q. (2017). Modeling electrical stimulation of retinal ganglion cell with optimizing additive noises for reducing threshold and energy consumption. BioMedical Engineering OnLine, 16, 38. https://doi.org/10.1186/s12938-017-0333-z
Xu, Y., Guo, Y. Y., Ren, G. D., & Ma, J. (2020). Dynamics and stochastic resonance in a thermosensitive neuron. Applied Mathematics and Computation, 385(15), 125427. https://doi.org/10.1016/j.amc.2020.125427
Xu, J., & Clancy, C. E. (2008). Ionic mechanisms of endogenous bursting in CA3 pyramidal neurons: A model study. PLoS ONE, 3(4), e2056. https://doi.org/10.1371/journal.pone.0002056
Yoshida, M., Hayashi, H., Tateno, K., & Ishizuka, S. (2002). Stochastic resonance in the hippocampal CA3-CA1 model: A possible memory recall mechanism. Neural Networks, 15(10), 1171–1183. https://doi.org/10.1016/S0893-6080(02)00092-8
Yi, G., Wang, J., & Wei, X. (2017). Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca2+ spike. Scientific Reports, 7, 45684. https://doi.org/10.1038/srep45684
Acknowledgements
The first author acknowledges the generous support of the China Scholarship Council (CSC) from the Ministry of Education of P. R. China. We would like to thank anonymous reviewers for their careful review and constructive comments.
Funding
This work is financially supported by the National Natural Science Foundation of China (Grant No. 11772241).
Author information
Authors and Affiliations
Contributions
M. B. Ghori proposed the research plan, designed simulations, analyzed results, and drafted the manuscript. Y. Chen contributed to bifurcation analysis. Y. Kang supervised and sponsored the research.
Corresponding author
Ethics declarations
Competing interest
The authors declare that they have no known competing financial interests.
Additional information
Action Editor: Louis Tao
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ghori, M.B., Kang, Y. & Chen, Y. Emergence of stochastic resonance in a two-compartment hippocampal pyramidal neuron model. J Comput Neurosci 50, 217–240 (2022). https://doi.org/10.1007/s10827-021-00808-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-021-00808-2