Abstract
Pyramidal cell spike block is a common occurrence in migraine with aura and epileptic seizures. In both cases, pyramidal cells experience hyperexcitation with rapidly increasing firing rates, major changes in electrochemistry, and ultimately spike block that temporarily terminates neuronal activity. In cortical spreading depression (CSD), spike block propagates as a slowly traveling wave of inactivity through cortical pyramidal cells, which is thought to precede migraine attacks with aura. In seizures, highly synchronized cortical activity can be interspersed with, or terminated by, spike block. While the identifying characteristic of CSD and seizures is the pyramidal cell hyperexcitation, it is currently unknown how the dynamics of the cortical microcircuits and inhibitory interneurons affect the initiation of hyperexcitation and subsequent spike block.
We tested the contribution of cortical inhibitory interneurons to the initiation of spike block using a cortical microcircuit model that takes into account changes in ion concentrations that result from neuronal firing. Our results show that interneuronal inhibition provides a wider dynamic range to the circuit and generally improves stability against spike block. Despite these beneficial effects, strong interneuronal firing contributed to rapidly changing extracellular ion concentrations, which facilitated hyperexcitation and led to spike block first in the interneuron and then in the pyramidal cell. In all cases, a loss of interneuronal firing triggered pyramidal cell spike block. However, preventing interneuronal spike block was insufficient to rescue the pyramidal cell from spike block. Our data thus demonstrate that while the role of interneurons in cortical microcircuits is complex, they are critical to the initiation of pyramidal cell spike block. We discuss the implications that localized effects on cortical interneurons have beyond the isolated microcircuit and their contribution to CSD and epileptic seizures.










Similar content being viewed by others
Data availability
Data is available in tabular form on request.
Code availability
Our model is available for download on ModelDB (accession number 267033; http://modeldb.yale.edu/267033).
References
Arabadzisz, D., & Freund, T. F. (1999). Changes in excitatory and inhibitory circuits of the rat hippocampus 12–14 months after complete forebrain ischemia. Neuroscience, 92(1), 27–45. https://doi.org/10.1016/S0306-4522(98)00736-2
Auffenberg, E., Hedrich, U. B. S., Barbieri, R., Miely, D., Groschup, B., Wuttke, T. V., Vogel, N., Lührs, P., Zanardi, I., Bertelli, S., Spielmann, N., Gailus-Durner, V., Fuchs, H., Angelis, M. H. de, Pusch, M., Dichgans, M., Lerche, H., Gavazzo, P., Plesnila, N., & Freilinger, T. (2021). Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. The Journal of Clinical Investigation, 131(21). https://doi.org/10.1172/JCI142202
Ayata, C. (2009). Spreading depression: From serendipity to targeted therapy in migraine prophylaxis. Cephalalgia: An International Journal of Headache, 29(10), 1095–1114. https://doi.org/10.1111/j.1468-2982.2009.01982.x
Ayata, C., & Lauritzen, M. (2015). Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiological Reviews, 95(3), 953–993. https://doi.org/10.1152/physrev.00027.2014
Barreto, E., & Cressman, J. R. (2011). Ion concentration dynamics as a mechanism for neuronal bursting. Journal of Biological Physics, 37(3), 361–373. https://doi.org/10.1007/s10867-010-9212-6
Barreto, G. E., Gonzalez, J., Torres, Y., & Morales, L. (2011). Astrocytic-neuronal crosstalk: Implications for neuroprotection from brain injury. Neuroscience Research, 71(2), 107–113. https://doi.org/10.1016/j.neures.2011.06.004
Begley, C. E., & Durgin, T. L. (2015). The direct cost of epilepsy in the United States: A systematic review of estimates. Epilepsia, 56(9), 1376–1387. https://doi.org/10.1111/epi.13084
Bloudek, L. M., Stokes, M., Buse, D. C., Wilcox, T. K., Lipton, R. B., Goadsby, P. J., Varon, S. F., Blumenfeld, A. M., Katsarava, Z., Pascual, J., Lanteri-Minet, M., Cortelli, P., & Martelletti, P. (2012). Cost of healthcare for patients with migraine in five European countries: Results from the International Burden of Migraine Study (IBMS). The Journal of Headache and Pain, 13(5), 361–378. https://doi.org/10.1007/s10194-012-0460-7
Börgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proceedings of the National Academy of Sciences, 102(19), 7002–7007. https://doi.org/10.1073/pnas.0502366102
Cardin, J. A. (2019). Functional flexibility in cortical circuits. Current Opinion in Neurobiology, 58, 175–180. https://doi.org/10.1016/j.conb.2019.09.008
Cestèle, S., Scalmani, P., Rusconi, R., Terragni, B., Franceschetti, S., & Mantegazza, M. (2008). Self-Limited Hyperexcitability: Functional Effect of a Familial Hemiplegic Migraine Mutation of the Nav1.1 (SCN1A) Na+ Channel. Journal of Neuroscience, 28(29), 7273–7283. https://doi.org/10.1523/JNEUROSCI.4453-07.2008
Cestèle, S., Schiavon, E., Rusconi, R., Franceschetti, S., & Mantegazza, M. (2013). Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proceedings of the National Academy of Sciences, 110(43), 17546–17551. https://doi.org/10.1073/pnas.1309827110
Chronicle, E. P., Pearson, A. J., & Mulleners, W. M. (2006). Objective assessment of cortical excitability in migraine with and without aura. Cephalalgia: An International Journal of Headache, 26(7), 801–808. https://doi.org/10.1111/j.1468-2982.2006.01144.x
Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170. https://doi.org/10.1007/s10827-008-0132-4
Dahlem, M. A. (2013). Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 046101. https://doi.org/10.1063/1.4813815
Dahlem, M. A., & Chronicle, E. P. (2004). A computational perspective on migraine aura. Progress in Neurobiology, 74(6), 351–361. https://doi.org/10.1016/j.pneurobio.2004.10.003
Dahlem, M. A., Schumacher, J., & Hübel, N. (2014). Linking a genetic defect in migraine to spreading depression in a computational model. PeerJ, 2, e379. https://doi.org/10.7717/peerj.379
Dalkara, T., & Moskowitz, M. A. (2017). Neurobiological Basis of Migraine. John Wiley & Sons.
De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L., Ballabio, A., Aridon, P., & Casari, G. (2003). Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nature Genetics, 33(2), 192–196. https://doi.org/10.1038/ng1081
Desroches, M., Faugeras, O., Krupa, M., & Mantegazza, M. (2019). Modeling cortical spreading depression induced by the hyperactivity of interneurons. Journal of Computational Neuroscience, 47(2–3), 125–140. https://doi.org/10.1007/s10827-019-00730-8
Dichgans, M., Freilinger, T., Eckstein, G., Babini, E., Lorenz-Depiereux, B., Biskup, S., Ferrari, M. D., Herzog, J., van den Maagdenberg, A. M., Pusch, M., & Strom, T. M. (2005). Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. The Lancet, 366(9483), 371–377. https://doi.org/10.1016/S0140-6736(05)66786-4
Zandt, B., ten Haken, B., van Putten, M. J. A. M., & Dahlem, M. A. (2015). How does spreading depression spread? Physiology and modeling. Reviews in the Neurosciences, 26(2), 183–198. https://doi.org/10.1515/revneuro-2014-0069
Epilepsy Foundation. (2021). Epilepsy Foundation. Epilepsy Foundation. https://www.epilepsy.com/
Hedrich, U. B. S., Liautard, C., Kirschenbaum, D., Pofahl, M., Lavigne, J., Liu, Y., Theiss, S., Slotta, J., Escayg, A., Dihné, M., Beck, H., Mantegazza, M., & Lerche, H. (2014). Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(45), 14874–14889. https://doi.org/10.1523/JNEUROSCI.0721-14.2014
Helmchen, F., Imoto, K., & Sakmann, B. (1996). Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophysical Journal, 70(2), 1069–1081. https://doi.org/10.1016/S0006-3495(96)79653-4
Herreras, O., Largo, C., Ibarz, J. M., Somjen, G. G., & del Rio, R. M. (1994). Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. Journal of Neuroscience, 14(11), 7087–7098. https://doi.org/10.1523/JNEUROSCI.14-11-07087.1994
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
Huang, T., Niesman, P., Arasu, D., Lee, D., De La Cruz, A. L., Callejas, A., Hong, E. J., & Lois, C. (2017). Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT). eLife. https://doi.org/10.7554/eLife.32027
Hübel, N., & Dahlem, M. A. (2014). Dynamics from Seconds to Hours in Hodgkin-Huxley Model with Time-Dependent Ion Concentrations and Buffer Reservoirs. PLOS Computational Biology, 10(12), e1003941. https://doi.org/10.1371/journal.pcbi.1003941
Hübel, N., Hosseini-Zare, M. S., Žiburkus, J., & Ullah, G. (2017). The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization. PLOS Computational Biology, 13(10), e1005804. https://doi.org/10.1371/journal.pcbi.1005804
Kahlig, K. M., Rhodes, T. H., Pusch, M., Freilinger, T., Pereira-Monteiro, J. M., Ferrari, M. D., van den Maagdenberg, A. M. J. M., Dichgans, M., & George, A. L. (2008). Divergent sodium channel defects in familial hemiplegic migraine. Proceedings of the National Academy of Sciences, 105(28), 9799–9804. https://doi.org/10.1073/pnas.0711717105
Kulik, Á., Booker, S. A., & Vida, I. (2018). Differential distribution and function of GABABRs in somato-dendritic and axonal compartments of principal cells and interneurons in cortical circuits. Neuropharmacology, 136(Pt A), 80–91. https://doi.org/10.1016/j.neuropharm.2017.10.018
Lei, Z., Zhang, H., Liang, Y., & Xu, Z. C. (2016). Reduced expression of IA channels is associated with post-ischemic seizures. Epilepsy Research, 124, 40–48. https://doi.org/10.1016/j.eplepsyres.2016.05.008
Mantegazza, M., & Broccoli, V. (2019). SCN1A/NaV 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia, 60 Suppl 3, S25–S38. https://doi.org/10.1111/epi.14700
Markram, H., Helm, P. J., & Sakmann, B. (1995). Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. The Journal of Physiology, 485(Pt 1), 1–20. https://doi.org/10.1113/jphysiol.1995.sp020708
Menezes, L. F. S., Sabiá Júnior, E. F., Tibery, D. V., Carneiro, L. D. A., & Schwartz, E. F. (2020). Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Frontiers in Pharmacology, 11, 1276. https://doi.org/10.3389/fphar.2020.01276
Migraine Research Foundation. (2021). Migraine Research Foundation. Migraine Research Foundation. https://migraineresearchfoundation.org/
Miura, R. M., Huang, H., & Wylie, J. J. (2007). Cortical spreading depression: An enigma. The European Physical Journal Special Topics, 147(1), 287–302. https://doi.org/10.1140/epjst/e2007-00214-8
Øyehaug, L., Østby, I., Lloyd, C. M., Omholt, S. W., & Einevoll, G. T. (2012). Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal of Computational Neuroscience, 32(1), 147–165. https://doi.org/10.1007/s10827-011-0345-9
Payne, J. A., Rivera, C., Voipio, J., & Kaila, K. (2003). Cation-chloride co-transporters in neuronal communication, development and trauma. Trends in Neurosciences, 26(4), 199–206. https://doi.org/10.1016/S0166-2236(03)00068-7
Poulin, H., & Chahine, M. (2021). R1617Q epilepsy mutation slows NaV 1.6 sodium channel inactivation and increases the persistent current and neuronal firing. The Journal of Physiology, 599(5), 1651–1664. https://doi.org/10.1113/JP280838
Press, W. H., Vettering, W. T., Teukolsky, S. A., & Flannery, B. P. (1992). Numerical Recipes in Fortran (2nd ed.). Cambridge University Press.
Povysheva, N., Nigam, A., Brisbin, A. K., Johnson, J. W., & Barrionuevo, G. (2019). Oxygen-Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons. Neuroscience, 412, 72–82. https://doi.org/10.1016/j.neuroscience.2019.05.042
Schiene, K., Bruehl, C., Zilles, K., Qu, M., Hagemann, G., Kraemer, M., & Witte, O. W. (1996). Neuronal Hyperexcitability and Reduction of GABAA-Receptor Expression in the Surround of Cerebral Photothrombosis. Journal of Cerebral Blood Flow & Metabolism, 16(5), 906–914. https://doi.org/10.1097/00004647-199609000-00014
Serrano, D., Manack, A. N., Reed, M. L., Buse, D. C., Varon, S. F., & Lipton, R. B. (2013). Cost and Predictors of Lost Productive Time in Chronic Migraine and Episodic Migraine: Results from the American Migraine Prevalence and Prevention (AMPP) Study. Value in Health, 16(1), 31–38. https://doi.org/10.1016/j.jval.2012.08.2212
Somjen, G. G. (2004). Ions in the brain: Normal function, seizures, and stroke. Oxford University Press.
Stokes, M., Becker, W. J., Lipton, R. B., Sullivan, S. D., Wilcox, T. K., Wells, L., Manack, A., Proskorovsky, I., Gladstone, J., Buse, D. C., Varon, S. F., Goadsby, P. J., & Blumenfeld, A. M. (2011). Cost of Health Care Among Patients With Chronic and Episodic Migraine in Canada and the USA: Results From the International Burden of Migraine Study (IBMS). Headache: The Journal of Head and Face Pain, 51(7), 1058–1077. https://doi.org/10.1111/j.1526-4610.2011.01945.x
Svoboda, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1997). In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature, 385(6612), 161–165. https://doi.org/10.1038/385161a0
Syková, E., & Nicholson, C. (2008). Diffusion in Brain Extracellular Space. Physiological Reviews, 88(4), 1277–1340. https://doi.org/10.1152/physrev.00027.2007
Tank, D. W., Regehr, W. G., & Delaney, K. R. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 15(12), 7940–7952.
Tiwari, V., Uniyal, A., Gadepalli, A., Tiwari, V., Agrawal, S., & others. (2020). Sodium Channels: As an Eye of the Storm in Various Clinical Pathologies. In Frontiers in Pharmacology of Neurotransmitters (pp. 619–634). Springer.
Traub, R. D. (1982). Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience, 7(5), 1233–1242. https://doi.org/10.1016/0306-4522(82)91130-7
Tuttle, A., Riera Diaz, J., & Mori, Y. (2019). A computational study on the role of glutamate and NMDA receptors on cortical spreading depression using a multidomain electrodiffusion model. PLoS Computational Biology, 15(12), e1007455. https://doi.org/10.1371/journal.pcbi.1007455
Ullah, G., Cressman Jr., J. R., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of Computational Neuroscience, 26(2), 171–183. https://doi.org/10.1007/s10827-008-0130-6
Ullah, G., Wei, Y., Dahlem, M. A., Wechselberger, M., & Schiff, S. J. (2015). The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization. PLOS Computational Biology, 11(8), e1004414. https://doi.org/10.1371/journal.pcbi.1004414
Van Harreveld, A., & Stamm, J. S. (1953). Effect of pentobarbital and ether on the spreading cortical depression. The American Journal of Physiology, 173(1), 164–170. https://doi.org/10.1152/ajplegacy.1953.173.1.164
Wang, J.-H. (2003). Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons in rats. Brain Research Bulletin, 60(1), 53–58. https://doi.org/10.1016/S0361-9230(03)00026-1
Wang, X.-J. (1998). Calcium Coding and Adaptive Temporal Computation in Cortical Pyramidal Neurons. Journal of Neurophysiology, 79(3), 1549–1566. https://doi.org/10.1152/jn.1998.79.3.1549
Wang, X.-J., & Buzsáki, G. (1996). Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model. Journal of Neuroscience, 16(20), 6402–6413. https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
Wei, Y., Ullah, G., & Schiff, S. J. (2014). Unification of Neuronal Spikes, Seizures, and Spreading Depression. Journal of Neuroscience, 34(35), 11733–11743. https://doi.org/10.1523/JNEUROSCI.0516-14.2014
Funding
The authors have no relevant financial or non-financial interests to disclose.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to this work. Both authors contributed to the study conception, design, data collection and analysis. The first draft of the manuscript was written by both authors and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflicts of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Action Editor: Steven J. Schiff
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Stein, W., Harris, A.L. Interneuronal dynamics facilitate the initiation of spike block in cortical microcircuits. J Comput Neurosci 50, 275–298 (2022). https://doi.org/10.1007/s10827-022-00815-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-022-00815-x