Skip to main content
Log in

Monomer Control for Error Tolerance in DNA Self-Assembly

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper proposes the control of monomer concentration as a novel improvement of the kinetic Tile Assembly Model (kTAM) to reduce the error rate in DNA self-assembly. Tolerance to errors in this process is very important for manufacturing scaffolds for highly dense ICs; the proposed technique significantly decreases error rates (i.e. it increases error tolerance) by controlling the concentration of the monomers (tiles) for a specific pattern to be assembled. By profiling, this feature is shown to be applicable to different tile sets. A stochastic analysis based on a new state model is presented. The analysis is extended to the cases of single, double and triple bondings. The kinetic trap model is modified to account for the different monomer concentrations. Different scenarios (such as dynamic and adaptive) for monomer control are proposed: in the dynamic (adaptive) control case, the concentration of each tile is assessed based on the current (average) demand during growth as found by profiling the pattern. Significant error rate reductions are found by evaluating the proposed schemes compared to a scheme with constant concentration. One of the significant advantages of the proposed schemes is that it doesn’t entail an overhead such as increase in size and a slow growth, while still achieving a significant reduction in error rate. Simulation results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bernstein G, Hu W, Hang Q, Sarveswaran K, Lieberman M (2004) Electron beam lithography and liftoff of molecules and DNA rafts. In: Proceedings of the IEEE conference on nanotechnology, pp 201–203

  2. Chen H-L, Goel A (2005) Error free self-assembly using error prone tiles. Lect Notes Comput Sci 3384:62–75

    Article  MathSciNet  Google Scholar 

  3. Hagiya M, Arita M, Kiga D, Sakamoto K, Yokoyama S (1997) Towards parallel evaluation and learning of boolean μ-formulas with molecules. In: Proceedings of the 3rd DIMACS Workshop on DNA based computers, held at the University of Pennsylvania, PA, June 23–25

  4. Hartemink AJ, Gifford DK (1997) Thermodynamic simulation of deoxyoligonucleotide hybridization for DNA computation. In: Proceedings of the 3rd DIMACS workshop on DNA based computers, University of Pennsylvania, June 23–25

  5. Hu W, Sarveswaran K, Lieberman M, Bernstein G (2005) High-resolution electron beam lithography and DNA nano-patterning for molecular QCA. IEEE Trans Nanotechnol 5(3):312–316

    Article  Google Scholar 

  6. Sakamoto K, Kiga D, Komiya K, Gouzu H, Yokoyama S, Ikeda S, Sugiyama H, Hagiya M (1998) State transitions by molecules. In: 4th internatonal meeting on DNA-Based Computing, Baltimore, PA (June)

  7. Soloveichik D, Winfree E (2006) Complexity of compact proofreading for self-assembly patterns. DNA Computing 11

  8. Winfree E (1995) On the computational power of DNA annealing and ligation. In: Lipton RJ, Baum EB (eds) DNA based computers. American Mathematical Society, RI, pp 199–210

  9. Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology, Pasadena

  10. Winfree E (1998) Simulation of computing by self-assembly. Technical Report CS-TR:1998.22, Caltech

  11. Winfree E (1998) Whiplash PCR for O(1) computing. P4, pp 175–188

  12. Winfree E (2006) Self-healing tile sets. Nanotechnology: science and computation, XII, pp 55–78

  13. Winfree E, Bekbolatov R (2004) Proofreading tile sets: Error-correction for algorithmic self-assembly. Lect Notes Comput Sci 2943:126–144

    MathSciNet  Google Scholar 

  14. Winfree E, Lin F, Wenzler LA, Seeman NC (August 1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–545

    Article  Google Scholar 

  15. Winfree E, Yang X, Seeman NC (1996) Universal computation via self-assembly of DNA: some theory and experiments. In: Proceedings of the second annual meeting on DNA based computers, Princeton University, PA, June 10–12

  16. Winfree E et al (2003) The xgrow simulator. http://www.dna.caltech.edu/Xgrow/xgrow-www.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byunghyun Jang.

Additional information

Responsible Editor: N. A. Touba

This manuscript is an extended version of a paper presented at the 21th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Oct 2006.

Appendices

Appendices

Single bonding: The single bonding case in monomer concentration control is described by the following rate equations.

$$\mathbf{\stackrel{\boldsymbol{.}}{p}_{\{AA,AB\}}}(t)=\left[\begin{array}{*{20}c}r^{1} &\kern4pt r_{r,1} &\kern4pt r_{r,0} &\kern4pt 0 &\kern4pt 0 \\r^{4} &\kern4pt r^{2} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 \\5r_{f,y} &\kern4pt 0 &\kern4pt r^{3} &\kern4pt 0 &\kern4pt 0 \\0 &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 \\0 &\kern4pt 0 &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0\end{array}\right]\left[\begin{array}{*{20}c}p_{E}(t) \\ p_{C}(t) \\ p_{I}(t) \\ p_{FC}(t) \\ p_{FI}(t)\end{array}\right]$$
$${\kern46.5pt} \doteq\mathbf{Mp_{\{AA,AB\}}}(t) $$

where \(r^{1}=-(r_{f,x}+6r_{f,y})\), \(r^{2}=-(r_{r,1}+r^{*}),\ r^{3}=\) \(-(r_{r,0}+r^{*})\), \(r^{4}=r_{f,x}+r_{f,y}\) and

$$\mathbf{\stackrel{\boldsymbol{.}}{p}_{\{BA,BB\}}}(t)=\left[\begin{array}{*{20}c}r^{1} &\kern4pt r_{r,1} &\kern4pt r_{r,0} &\kern4pt 0 &\kern4pt 0 \\2r_{f,y} &\kern4pt r^{2} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 \\r^{4} &\kern4pt 0 &\kern4pt r^{3} &\kern4pt 0 &\kern4pt 0 \\0 &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 \\0 &\kern4pt 0 &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0\end{array}\right]\left[\begin{array}{*{20}c}p_{E}(t) \\ p_{C}(t) \\ p_{I}(t) \\ p_{FC}(t) \\ p_{FI}(t)\end{array}\right]$$
$${\kern45pt} \doteq\mathbf{Mp_{\{BA,BB\}}}(t) $$

where \(r^{1}=-(r_{f,x}+6r_{f,y})\), \(r^{2}=-(r_{r,1}+r^{*}),\ r^{3}=\) \(-(r_{r,0}+r^{*})\), \(r^{4}=r_{f,x}+4r_{f,y}\).

Triple bonding: The rate equations for this bonding case are given below.

$$\mathbf{\stackrel{\boldsymbol{.}}{p}_{AA}}(t)=\left[\begin{array}{*{20}c}r^{1} &\kern4pt r_{r,3} &\kern4pt r_{r,2} &\kern4pt r_{r,1} &\kern4pt r_{r,0} &\kern4pt 0 &\kern4pt 0 \\r_{f,x} &\kern4pt r^{2} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0\\r_{f,y} &\kern4pt 0 &\kern4pt r^{3} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0\\2r_{f,y} &\kern4pt 0 &\kern4pt 0 &\kern4pt r^{4} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 \\3r_{f,y} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt r^{5} &\kern4pt 0 &\kern4pt 0 \\0 &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0\\0 &\kern4pt 0 &\kern4pt r^{*} &\kern4pt r^{*} &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0\end{array}\right]\left[\begin{array}{*{20}c}p_{E}(t) \\ p_{CCC}(t) \\ p_{CCI}(t) \\ p_{ICI}(t) \\ p_{III}(t) \\ p_{FC}(t) \\p_{FI}(t)\end{array}\right]$$
$${\kern28.5pt}\doteq\mathbf{Mp_{AA}}(t) $$

where \(r^{1}=-(r_{f,x}+6r_{f,y})\), \(r^{2}=-(r_{r,3}+r^{*}),\ r^{3}=\) \(-(r_{r,2}+r^{*})\), \(r^{4}=-(r_{r,1}+r^{*})\), \(r^{5}=-(r_{r,0}+r^{*})\) and

$$\mathbf{\stackrel{\boldsymbol{.}}{p}_{\{AB,BA\}}}(t)=\left[\begin{array}{*{20}c}r^{1} &\kern4pt r_{r,3} &\kern4pt r_{r,1} &\kern4pt r_{r,0} &\kern4pt 0 &\kern4pt 0 \\r_{f,y} &\kern4pt r^{2} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0\\r^{5} &\kern4pt 0 &\kern4pt r^{3} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 \\2r_{f,y} &\kern4pt 0 &\kern4pt 0 &\kern4pt r^{4} &\kern4pt 0 &\kern4pt 0 \\0 &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0 &\kern4pt 0 &\kern4pt 0\\0 &\kern4pt 0 &\kern4pt r^{*} &\kern4pt r^{*} &\kern4pt 0 &\kern4pt 0\end{array}\right]\left[\begin{array}{*{20}c}p_{E}(t) \\ p_{CCC}(t) \\ p_{ICI}(t) \\ p_{III}(t) \\ p_{FC}(t) \\p_{FI}(t)\end{array}\right]$$
$${\kern45.2pt}\doteq\mathbf{Mp_{\{AB,BA\}}}(t) $$

where \(r^{1}=-(r_{f,x}+6r_{f,y})\), \(r^{2}=-(r_{r,3}+r^{*}),\ r^{3}=\) \(-(r_{r,1}+r^{*})\), \(r^{4}=-(r_{r,0}+r^{*})\), \(r^{5}=r_{f,x}+3r_{f,y}\) and

$$\mathbf{\stackrel{\boldsymbol{.}}{p}_{BB}}(t)=\left[\begin{array}{*{20}c}r^{1} &\kern4pt r_{r,3} & \kern4ptr_{r,1} & \kern4ptr_{r,0} & \kern4pt0 & \kern4pt0 \\r_{f,y} & \kern4ptr^{2} & \kern4pt0 & \kern4pt0 & \kern4pt0 & \kern4pt0\\r^{5} & \kern4pt0 & \kern4ptr^{3} & \kern4pt0 & \kern4pt0 & \kern4pt0 \\3r_{f,y} & \kern4pt0 & \kern4pt0 & \kern4ptr^{4} & \kern4pt0 & \kern4pt0 \\0 &\kern4pt r^{*} & \kern4pt0 & \kern4pt0 & \kern4pt0 & \kern4pt0\\0 & \kern4pt0 & \kern4ptr^{*} & \kern4ptr^{*} & \kern4pt0 & \kern4pt0\end{array}\right]\left[\begin{array}{*{20}c}p_{E}(t) \\ p_{CCC}(t) \\ p_{ICI}(t) \\ p_{III}(t) \\ p_{FC}(t) \\p_{FI}(t)\end{array}\right]$$
$${\kern28.2pt}\doteq\mathbf{Mp_{BB}}(t) $$

where \(r^{1}=-(r_{f,x}+6r_{f,y})\), \(r^{2}=-(r_{r,3}+r^{*}),\ r^{3}=\) \(-(r_{r,1}+r^{*})\), \(r^{4}=-(r_{r,0}+r^{*})\), \(r^{5}=r_{f,x}+2r_{f,y}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, B., Kim, YB. & Lombardi, F. Monomer Control for Error Tolerance in DNA Self-Assembly. J Electron Test 24, 271–284 (2008). https://doi.org/10.1007/s10836-007-5016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-007-5016-4

Keywords

Navigation