Abstract
We present techniques for response analysis for timing characterization, i.e., delay test and debug of Integrated Circuits (ICs), using on-chip delay measurement of critical paths of the IC. Delay fault are a major source of failure in modern ICs designed in Deep Sub-micron technologies, making it imperative to perform delay fault testing on such ICs. Delay fault testing schemes should enable detection of gross as well as small delay faults in such ICs to be efficient. Additionally there is a need for performing efficient and systematic silicon debug for timing related failures. The timing characterization techniques presented in this paper overcome the observability limitations of existing timing characterization schemes in achieving the aforementioned goals, thus enabling quick and efficient timing characterization of DSM ICs. Additionally the schemes have low hardware overhead and are robust in face of process variations.
Similar content being viewed by others
References
Abaskharoun N, Hafed M, Roberts GW (2001) Strategies for on-chip sub-nanosecond signal capture and timing measurements. In: International symposium oncircuits and systems, IEEE, pp 174–177
Artisan Components Inc (2002) TSMC 0.18 μm process 1.8 Standard Cell Library Databook
Baker K, Gronthoud G, Lousberg M, Schanstra I, Hawkins C (1999) Defect-based delay testing of resisitive vias-contacts: a critical evaluation. In: International test conference, IEEE, pp 467–476
Balachandran H, Butler KM, Simpson N (2002) Facilitating rapid first silicon debug. In: International test conference, IEEE, pp 628–637
Balajee S, Majhi AK (1998) Automated AC (timing) characterization for digital circuit testing. In: International conference on VLSI design, IEEE, pp 374–377
Bazes M (1985) A novel precision MOS synchronous delay line. IEEE J Solid State Circuits 20(6):1265–1271
Bazes M, Ashuri R (1992) A novel CMOS digital clock and data decoder. IEEE J Solid State Circuits 27(12):1934–1940
Borkar S, Karnik T, Narendra S, Tschanz J, Keshavarzi A, De V (2003) Parameter variations and impact on circuits and microarchitecture. In: Design automation conference, IEEE, pp 338–342
Bota SA, Rosales M, Rossello JL, Segura J (2006) Low VDD vs. delay: is it really a good correlation metric for nanometer ICs. In: VLSI test symposium, IEEE, pp 358–363
Bowman KA, Duvall SG, Meindl JD (2002) Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J Solid State Circuits 37(2):183–190
Cao Y, Sato T, Orshansky M, Sylvester D, Hu C (2000) New paradigm of predictive MOSFET and interconnect modelling for early circuit simulation. In: Custom integrated circuits conference, IEEE, pp 201–204
Chan AH, Roberts GW (2001) A synthesizable fast and high-resolution timing measurement device using a component-invariant vernier delay line. In: International test conference, IEEE, pp 858–867
Chan AH, Roberts GW (2002) A deep sub-micron timing measurement circuit using a single stage vernier delay line. In: Custom integrated circuits conference, IEEE, pp 77–80
Chang JT-Y, Mccluskey EJ (1996) Detecting delay flaws by very-low-voltage testing. In: International test conference, IEEE, pp 367–376
Chen P, Liu S-I, Wu J (1997) A low power high accuracy CMOS time-to-digital converter. In: International symposium on circuits and systems, IEEE, pp 281–284
Chen P, Liu S-I, Wu J (1997) Highly accurate cyclic CMOS time-to-digital converter with extremely low power consumption. IEEE Electron Lett 33(10):858–860
Chen P, Liu S-I, Wu J (2000) A CMOS pulse-shrinking delay element for time interval measurement. IEEE Trans Circuits Syst II 47(9):954–958
Cheng K-H, Jiang S-Y, Chen Z-S (2003) BIST for clock jitter measurements. In: International symposium on circuits and systems, IEEE, pp V 577–V 580
Christiansen J (1995) An integrated CMOS 0.15ns digital timing generator for TDCs and clock distribution systems. IEEE Trans Nucl Sci 42(4):753–757
Dadda L (1965) Some schemes for parallel multipliers. Alta Freq 34:349–356
Das S, Roberts D, Lee S, Pant S, Blaauw D, Austin T, Flautner K, Mudge T (2006) A self-tuning DVS processor using delay-error detection and correction. IEEE J Solid State Circuits 41(4):792–804
Datta R, Carpenter G, Nowka K, Abraham JA (2006) A scheme for on-chip timing characterization. In: VLSI test symposium, IEEE, pp 24–29
Datta R, Gupta R, Sebastine A, Abraham JA, Dabreu M (2004) TriScan: a novel DFT technique for CMOS path delay fault testing. In: International test conference, IEEE, pp 1118–1127
Datta R, Sebastine A, Abraham JA (2004) Delay fault testing and silicon debug using scan chains. In: European test symposium, IEEE, pp 46–51
Datta R, Sebastine A, Raghunathan A, Abraham JA (2004) On-chip delay measurement for silicon debug. In: Great lakes symposium on VLSI, ACM, pp 145–148
Dervisoglu B (1999) Design for testability: it is time to deliver it for time-to-market. In: International test conference, IEEE, pp 1102–1111
Dudek P, Szczepanski S, Hatfield JV (2000) A high-resolution CMOS time-to-digital converter utilizing a vernier delay line. IEEE J Solid State Circuits 35(2):240–247
Duvall SG (2000) Statistical circuit modeling and optmization. In: International workshop on statistical metrology, IEEE, pp 56–63
Favalli M, Olivo P, Damiani M, Ricco B (1990) Novel design for testability schemes for CMOS IC’s. IEEE J Solid State Circuits 25(5):1239–1246
Franco P, McCluskey EJ (1991) Delay testing of digital circuits by output waveform analysis. In: International test conference, IEEE, pp 798–807
Genat J-F (1992) High resolution time-to-digital converter. Nuclear Instruments and Methods in Physics Research, A315
Genat J-F, Rossel F (1988) Ultra high-speed time-to-digital converter. United States Patent no. 4719608
Gorbics MS, Kelly J, Roberts KM, Sumner RL (1997) A high-resolution multihit time-to-digital converter integrated circuit. IEEE Trans Nucl Sci 44(3):379–384
Gray CT, Liu W, Noije WAV, Hughes TA, RKC III (1994) A sampling technique and its CMOS implementation with 1 Gb/s bandwidth and 25 ps resolution. IEEE J Solid State Circuits 29(3):340–349
Hawkins C, Keshavarzi A, Segura J (2003) A view from the bottom: nanometer technology AC parametric failures—why, where, and how to detect. In: International symposium on defect and fault tolerance, IEEE, pp 267–276
Hsiao M-J, Huang J-R, Yang S-S, Chang T-Y (2001) A built-in timing parametric measurement unit. In: International test conference, IEEE, pp 315–322
Kinra A (1999) Towards reducing functional only fails for the UltraSPARC microprocessors. In: International test conference, IEEE, pp 147–154
Ljuslin C, Christiansen J, Marchioro A, Klingsheim O (1994) An integrated 16-channel CMOS time to digital converter. IEEE Trans Nucl Sci 41(4):1104–1108
Maly W, Nigh P (1988) Built-in current testing - feasibility study. In: International conference on computer aided design, IEEE, pp 340–343
Mao W, Ciletti MD (1990) A variable observation time method for testing delay faults. In: Design automation conference, ACM/IEEE, pp 728–731
Maxwell P, Hartanto I, Bentz L (2000) Comparing functional and structural tests. In: International test conference, IEEE, pp 400–407
Miyazaki M, Ono G, Ishibashi K (2002) A 1.2-GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias. IEEE J Solid State Circuits 37(2):210–217
Naffziger S, Stackhouse B, Grutkowski T (2005) The implementation of a 2-core multi-threaded itanium processor. In: International solid state circuits conference, IEEE, pp 182–184
Nassif SR (2000) Modeling and forecasting of manufacturing variations. In: International workshop on statistical metrology, IEEE, pp 2–10
Needham W, Gollakota N (1996) DFT strategy for intel microprocessors. In: International test conference, IEEE, pp 396–399
Needham et al (1998) High volume microprocessor test escapes, an analysis of defects our tests are missing. In: International test conference, IEEE, pp 25–34
Parvathala P, Maneparambil K, Lindsay W (2002) FRITS - a microprocessor functional BIST method. In: International test conference, IEEE, pp 590–598
Pham D, Asano S, Bolliger M, Day M, Hofstee HP, Johns C, Kahle J, Kameyama A, Keaty J, Masubuchi Y, Riley M, Shippy D, Stasiak D, Suzuoki M, Wang M, Warnock J, Weitzel S, Wendel D, Yamazaki T, Yazawa K (2005) The design and implementation of a first generation CELL processor. In: International solid state circuits conference, IEEE, pp 184–186
Pramanick AK, Reddy SM (1989) On the computation of the ranges of detected delay fault sizes. In: International conference on computer aided design, IEEE, pp 126–129
Raahemifar K, Ahmadi M (2000) Design for testability techniques for detecting delay faults in CMOS/BiCMOS logic families. IEEE Trans Circuits Syst II 47(11):1279–1290
Rahkonen T, Kostamovaara J (1990) Pulsewidth measurement using an integrated pulse shrinking delay line. In: International symposium on circuits and systems, IEEE, pp 578–581
Rahkonen T, Kostamovaara J, Saynajakangas S (1988) CMOS ASIC devices for the measurement of short time intervals. In: International symposium on circuits and systems, IEEE, pp 1593–1596
Rahkonen T, Kostamovaara JT (1993) The use of CMOS delay lines for digitization of short time intervals. IEEE J Solid State Circuits 28(8):887–894
Rahkonen T, Malo E, Kostamovaara J (1996) A 3V fully integrated digital FM demodulator based on a CMOS pulse-shrinking delay line. In: International symposium on circuits and systems, IEEE, pp 572–575
Raisanen-Ruotsalainen E, Rahkonen T, Kostamovaara J (1995) A low-power CMOS time-to-digital converter. IEEE J Solid State Circuits 30(9):984–990
Raychowdhury A, Ghosh S, Bhunia S, Ghosh D, Roy K (2005) A novel delay fault testing methodology using on-chip low overhead delay measurement hardware at strategic test points. In: European test symposium, IEEE, pp 108–113
Sachdev M, Janssen P, Zieren V (1998) Defect detection with transient current testing and its potential for deep sub-micron CMOS ICs. In: International test conference, IEEE, pp 204–213
Sasaki O, Taniguchi T, Ohska TK, Mori H, Nonaka T, Kaminishi K, Tsukuda A, Nishimura H, Takeda M, Kawakami Y (1989) 1.2ghz GaAs shift register IC for dead-time-less TDC application. IEEE Trans Nucl Sci 36(1):512–516
Savir J (1992) Skewed load transition test: part I, calculus. In: International test conference, IEEE, pp 705–713
Savir J (1992) Skewed load transition test: part II, coverage. In: International test conference, IEEE, pp 714–722
Savir J (1994) On broad-side delay test. In: VLSI test symposium, IEEE, pp 284–290
Segura J, Keshavarzi A, Soden J, Hawkins C (2002) Parametric failures in CMOS ICs - a defect-based analysis. In: International test conference, IEEE, pp 90–99
Silicon Ensemble. Auto place and route tool
Stevens A, Vanberg RP, Spiegel JVD, Williams HH (1989) A Time-to-voltage converter and analog memory for colliding beam detectors. IEEE J Solid State Circuits 24(6):1748–1752
Stojanovic V, Oklobdzija V (1999) Comparative analysis of master-slave latches and flip-flops for high-performance and low power systems. IEEE J Solid State Circuits 34(4):536–548
Su C, Chen Y-T, Huang M-J, Chen G-N, Lee C-L (2000) All digital built-in delay and crosstalk measurement for on-chip buses. In: Design automation and test in Europe conference and exhibition, IEEE, pp 527–531
Synopsis Inc. Primetime Reference (2000) Version 2000.11
Tam S, Limaye RD, Desai UN (2004) Clock generation and distribution for the 130-nm itanium 2 processor with 6-MB on-die L3 cache. IEEE J Solid State Circuits 39(4):636–642
Tisa S, Lotito A, Giudice A, Zappa F (2003) Monolithic time-to-digital converter with 20ps resolution. In: European solid state circuits conference, IEEE, pp 465–468
University of Texas at Austin. EE382M VLSI-2 class notes. http://www.ece.utexas.edu/~mcdermot. Accessed 2003
Vermeulen B, Goel SK (2002) Design for debug: catching design errors in digital chips. IEEE Des Test Comput 19(3):37–45
Wallace C (1964) A suggestion for a fast multiplier. IEEE Trans Comput 13:14–17
Wood TJ (1999) The test and debug features of the AMD-K7TM microprocessor. In: International test conference, IEEE, pp 130–136
Wu WC, Lee CL, Wu MS, Chen JE, Abadir MS (2000) Oscillation ring delay test for high performance microprocessors. J Electron Test: Theory Appl 16(1–2):147–155
Acknowledgements
The authors would like to thank Whitney J. Townsend for helping us design the multipliers.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: A. D. Singh
This work was supported in part by the IBM Faculty Partnership Award Program, and in part by the Gigascale Systems Research Center at UC Berkeley under contract 2003-DT-660 from Microelectronics Advanced Research Corporation (MARCO).
Rights and permissions
About this article
Cite this article
Datta, R., Sebastine, A., Raghunathan, A. et al. On-Chip Delay Measurement Based Response Analysis for Timing Characterization. J Electron Test 26, 599–619 (2010). https://doi.org/10.1007/s10836-010-5188-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10836-010-5188-1