Skip to main content
Log in

Testing of Low-cost Digital Microfluidic Biochips with Non-Regular Array Layouts

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Digital microfluidic biochips with non-regular arrays are of interest for clinical diagnostic applications in a cost-sensitive market segment. Previous techniques for biochip testing are limited to regular microfluidic arrays. We present an automatic test pattern generation (ATPG) method for non-regular digital microfluidic chips. The ATPG method can generate test patterns to detect catastrophic defects in non-regular arrays where the full reconfigurability of the digital microfluidic platform is not utilized. It automates test-stimulus design and test-resource selection, in order to minimize the test application time. We also present an integer linear programming model for the compaction of test patterns, while maintaining the desired fault coverage. We utilize two fabricated biochips with non-regular microfluidic arrays to evaluate the proposed ATPG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Advanced Liquid Logic. http://www.liquid-logic.com. Accessed 10 April 2011

  2. Bohringer KF (2006) Modeling and controlling parallel tasks in droplet-based microfluidic systems. IEEE Trans CAD 25:334–344

    Google Scholar 

  3. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits. Kluwer Academic Publishers

  4. Chakrabarty K, Su F (2006) Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Cho M, Pan DZ (2008) A high-performance droplet routing algorithm for digital microfluidic biochips. IEEE Trans CAD 27:1714–1724

    Google Scholar 

  6. Datta S et al (2009) Efficient parallel testing and diagnosis of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, vol 5, article 10

  7. Davids D et al (2008) A fault detection and diagnosis technique for digital microfluidic biochips. In: IEEE international mixed-signal, sensors, and systems test workshop

  8. Dhayni A, Mir S, Rufer L (2004) MEMS built-in-self-test using MLS. In: Proc. IEEE Eur. test symp., pp 66–71

  9. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  10. Fair RB et al (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24:10–24

    Article  Google Scholar 

  11. Gayem Q, Liu H, Richardson A, Burd N (2009) Built-in test solutions for the electrode structures in bio-fluidic microsystems. In: Proc. ETS, pp 73–78

  12. Griffith EJ, Akella S, Goldberg MK (2006) Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans CAD 25:345–357

    Google Scholar 

  13. Kolpekwar A, Blanton RD (1997) Development of a MEMS testing methodology. In: Proc. IEEE int. test conf., pp 923–993

  14. Luan L et al (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8:628–635

    Article  Google Scholar 

  15. Medoro G et al (2007) Dielectrophoretic separation of human spermatozoa from epithelial cells. In: MicroTAS

  16. Minas G et al (2005) On-chip integrated CMOS optical detection microsystem for spectrophotometric analyses in biological microfluidic systems. In: Proceedings of IEEE international symposium on industrial electronics, pp 1133–1138

  17. Mitra D et al (2008) Accelerated functional testing of digital microfluidic biochips. In: IEEE Asian test symposium, pp 295–300

  18. Mitra D et al (2010) Testing of digital microfluidic biochips using improved eulerization techniques and the chinese postman problem. In: Proc. ATS, pp 111–116

  19. Srinivasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: Proc. MicroTAS, pp 1287–1290

  20. Sista R et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104

    Article  Google Scholar 

  21. Su F et al (2003) Testing of droplet-based microelectrofluidic systems. In: Proc. IEEE int. test conf., pp 1192–1200

  22. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips. In: Proc. DATE, pp 323–328

  23. Su F, Ozev S, Chakrabarty K (2006) Test planning and test resource optimization for droplet-based microfluidic systems. JETTA 22:199–210

    Google Scholar 

  24. Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and diagnosis of realistic defects in digital microfluidic biochips. JETTA 23:219–233

    Google Scholar 

  25. Xu T, Chakrabarty K (2008) Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, vol 4, no 3, article 11

  26. Xu T et al (2008) Design and optimization of a digital microfluidic biochip for protein crystallization. In: Proc. ICCAD

  27. Xu T, Chakrabarty K (2007) Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans Biomed Circuits Sys 1:148–158

    Article  Google Scholar 

  28. Yuh P-H et al (2006) Placement of digital microfluidic biochips using the T-tree formulation. In: Proc. DAC, pp 931–934

Download references

Acknowledgements

The authors thank Advanced Liquid Logic, Inc., for providing the commercial prototype chip. The authors also thank members of Duke University’s Digital Microfluidics Laboratory for providing the chip for DNA pyrosequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao.

Additional information

Responsible Editor: M. Tehranipoor

This research was supported in part by the National Science Foundation under grant CCF-0914895. A preliminary version of this paper was published in Proc. IEEE Asian Test Symposium, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Chakrabarty, K. & Bhattacharya, B.B. Testing of Low-cost Digital Microfluidic Biochips with Non-Regular Array Layouts. J Electron Test 28, 243–255 (2012). https://doi.org/10.1007/s10836-011-5266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-011-5266-z

Keywords

Navigation