Skip to main content
Log in

Novel Practical Built-in Current Sensors

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

In this paper, we propose three new built-in current sensors (BICS) topologies for on-chip IDDQ tests of analog/mixed-signal (AMS) circuits with the objective to achieve low design complexity, small area overhead and high accuracy. The first two approaches are derived from digital varicap threshold logic (VcTL) gate idea where the structure is modified for analog inputs. The third approach is a switched-cap (SC) methodology with a latch type comparator. Each design and corresponding performance results are provided in details and verified with corner and Monte Carlo analyses. All three approaches are designed as both ATE-assisted and built-in self-test (BIST) solutions. Low drop-out regulators (LDOs) in an AMS system on-chip (SOC) having more than 20 LDOs are selected as circuit under tests (CUT). The target current range is 0–100 μA to cover all LDOs. Moreover, the programmability of these proposed BICS provide a single BICS per chip solution. The overall IDDQ test time is reduced from 927 μs to 280 ns by using proposed BICS (VcTL type with PMOS capacitances). It is a significant improvement in test time and cost considering that the sensor only occupies 0.36 % of a single LDO area or equivalently 0.02 % of entire LDO subsystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arabi K, Kaminska B (2000) Design and realization of a built-in current sensor for IDDQ testing and power dissipation measurement. Analog Integr Circuits Signal Process 23:117–126

    Article  Google Scholar 

  2. Association SI (2007) International technology roadmap for semiconductors 2007. http://www.itrs.net/Links/2007ITRS/Home2007.htm Accessed 12 September 2011

  3. Brodersen R, Gray P, Hodges D (1979) Mos switched-capacitor filters. Proc IEEE 67(1):61–75. doi:10.1109/PROC.1979.11203

    Article  Google Scholar 

  4. Chong SS, Chan PK (2011) A quiescent power-aware low-voltage output capacitorless low dropout regulator for SOC applications. In: 2011 IEEE international symposium on circuits and systems (ISCAS), pp 37–40. doi:10.1109/ISCAS.2011.5937495

  5. Cimino M, Lapuyade H, De Matos M, Taris T, Deval Y, Bégueret J (2007) A robust 130 nm-CMOS built-in current sensor dedicated to RF applications. J Electron Test 23:593–603

    Article  Google Scholar 

  6. Dragic MS, Filanovsky IM, Margala M (2004) A novel on-chip amplifier for fast IDDQ current monitoring. Analog Integr Circuits Signal Process 41:185–198

    Article  Google Scholar 

  7. Ekekon O, Maltabas S, Margala M, Cilingiroglu U (2010) Power minimization methodology for VCTL topologies. In: 2010 IEEE international SOC conference (SOCC), pp 330–333. doi:10.1109/SOCC.2010.5784688

  8. Kim JB, Hong SJ, Kim J (1998) Design of a built-in current sensor for IDDQ testing. IEEE J Solid-State Circuits 33(8):1266–1272. doi:10.1109/4.705368

    Article  Google Scholar 

  9. Liobe J, Margala M (2007) Novel process and temperature-stable, IDD sensor for the bist design of embedded digital, analog, and mixed-signal circuits. IEEE Trans Circuits Syst I, Reg Pap 54(9):1900–1915. doi:10.1109/TCSI.2007.904653

    Article  MathSciNet  Google Scholar 

  10. Malaiya Y, Jayasumana A, Tong Q, Menon S (1991) Enhancement of resolution in supply current based testing for large ics. In: VLSI test symposium, 1991. ‘Chip-to-system test concerns for the 90’s’, Digest of papers, pp 291–296. doi:10.1109/VTEST.1991.208173

  11. Maltabas S, Margala M, Cilingiroglu U (2009) Varicap threshold logic. In: Proceedings of the 19th ACM Great Lakes symposium on VLSI, GLSVLSI ’09, pp 239–244

  12. Maltabas S, Ekekon O, Margala M (2010) A new built-in IDDQ testing method using programmable BICS. In: 2010 15th IEEE European test symposium (ETS), p 264. doi:10.1109/ETSYM.2010.5512729

  13. Miura Y, Yamazaki H (1999) A low-loss built-in current sensor. J Electron Test 14:39–48

    Article  Google Scholar 

  14. Mozuelos R, Lechuga Y, Martinez M, Bracho S (2011) Structural test approach for embedded analog circuits based on a built-in current sensor. J Electron Test 27(2):177–192

    Google Scholar 

  15. Rajsuman R (2000) IDDQ testing for CMOS VLSI. Proc IEEE 88(4):544–568. doi:10.1109/5.843000

    Article  Google Scholar 

  16. Rullan M, Ferrer C, Oliver J, Mateo D, Rubio A (1996) Analysis of ISSQ/IDDQ testing implementation and circuit partitioning in CMOS cell-based design. In: European design and test conference, 1996. ED TC 96. Proceedings, pp 584–588. doi:10.1109/EDTC.1996.494360

  17. Sabade SS, Walker DMH (2003) IDDX based test methods: a survey. ACM Transact Des Autom Electron Syst 1–39

  18. Sunter S (2010) Essential principles of analog BIST. In: 2010 IEEE southwest DFT conference

  19. Xue B, Walker D (2005) IDDQ test using built-in current sensing of supply line voltage drop. In: IEEE international test conference, 2005. Proceedings. ITC 2005, pp 954–963. doi:10.1109/TEST.2005.1584061

  20. Yellampalli S, Korivi N, Marulanda J (2008) Built-in current sensor for quiescent current testing in analog CMOS circuits. In: 40th southeastern symposium on system theory, 2008. SSST 2008, pp 329–333. doi:10.1109/SSST.2008.4480248

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samed Maltabas.

Additional information

Responsible Editor: D. Keezer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltabas, S., Kulovic, K. & Margala, M. Novel Practical Built-in Current Sensors. J Electron Test 28, 673–683 (2012). https://doi.org/10.1007/s10836-012-5313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-012-5313-4

Keywords

Navigation