Skip to main content
Log in

An MCT-Based Bit-Weight Extraction Technique for Embedded SAR ADC Testing and Calibration

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper presents a self-testing and calibration technique for the embedded successive approximation register (SAR) analog-to-digital converter (ADC) in system-on-chip (SoC) designs. We first proposed a low cost design-for-test (DfT) technique that estimates the SAR ADC performance before and after calibration by characterizing its digital-to-analog converter (DAC) capacitor weights (bit weights). Utilizing major carrier transition (MCT) testing, the required analog measurement range is only about 1 LSB; this significantly reduces test circuitry complexity. Then, we develop a fully-digital calibration technique that utilizes the extracted bit weights to correct the non-ideal I/O behavior induced by capacitor mismatch. Simulation results show that (1) the proposed testing technique achieves very high test accuracy even in the presence of large noise, and (2) the proposed calibration technique effectively improves both static and dynamic performances of the SAR ADC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Alpman E et al (2009) A 1.1V 50mW 2.5GS/s 7b time-interleaved C-2C SAR ADC in 45nm LP digital CMOS. In: IEEE international solid-state circuits conference—digest of technical papers, pp 76–77

  2. Burns M et al (2000) An introduction to mixed-signal IC test and measurement. Oxford University Press, Oxford

    Google Scholar 

  3. Chang H-M et al (2010) Calibration-assisted production testing for digitally-calibrated ADCs. In: IEEE VLSI test symposium, pp 295–300

  4. Cho Y-K et al (2010) A 9-bit 80 MS/s successive approximation register analog-to-digital converter with a capacitor reduction technique. IEEE Trans Circuits Syst II 57(7):502–506

    Article  Google Scholar 

  5. Giannini V et al (2008) An 820μW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90nm digital CMOS. In: IEEE international solid-state circuits conference—digest of technical papers, pp 238–240

  6. Goyal S et al (2005) Test time reduction of successive approximation register A/D converter by selective code measurement. In: IEEE international test conference, pp 218–225

  7. Goyal S et al (2008) Linearity testing of A/D converters using selective code measurement. J Electron Test 24(4):567–576

    Article  Google Scholar 

  8. Huang J-L et al (2000) A BIST scheme for on-chip ADC and DAC testing. In: IEEE design, automation, and test in Europe conference and exhibition, pp 216–220

  9. Huang X-L et al (2011) A self-testing and calibration method for embedded successive approximation register ADC. In: IEEE Asia and South Pacific design automatic conference, pp 713–718

  10. Kinget PR (2005) Device mismatch and tradeoffs in the design of analog circuits. IEEE J Solid-State Circuits 40(6):1212–1224

    Article  Google Scholar 

  11. Liu W et al (2007) An equalization-based adaptive digital background calibration technique for successive approximation analog-to-digital converters. In: IEEE international conference on ASIC, pp 289–292

  12. Liu W et al (2009) A 600MS/s 30mW 0.13μm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization. In: IEEE international solid-state circuits conference—digest of technical papers, pp 82–84

  13. Liu W et al (2010) A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR. In: IEEE international solid-state circuits conference—digest of technical papers, pp 380–382

  14. Liu W et al (2011) A 12-bit 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration. IEEE J Solid-State Circuits 46(11):2661–2672

    Article  Google Scholar 

  15. McCreary JL et al (1975) All-MOS charge redistribution analog-to-digital conversion techniques part I. IEEE J Solid-State Circuits 10(6):371–379

    Article  Google Scholar 

  16. Ohnhaeuser F et al (2011) SAR ADC and method with INL compensation. US Patent 7,944,379

  17. Schinkel D et al (2007) A double-tail latch-type voltage sense amplifier with 18ps setup+hold time. In: IEEE international solid-state circuits conference—digest of technical papers, pp 314–315

  18. Wang X et al (2004) A 12-Bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration. IEEE J Solid-State Circuits 39(11):1799–1808

    Article  Google Scholar 

  19. Yoshioka M et al (2010) A 10b 50MS/s 820μW SAR ADC with onchip digital calibration. In: IEEE international solid-state circuits conference—digest of technical papers, pp 384–386

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Lun Huang.

Additional information

Responsible Editor: D. Keezer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XL., Huang, JL., Chen, HI. et al. An MCT-Based Bit-Weight Extraction Technique for Embedded SAR ADC Testing and Calibration. J Electron Test 28, 705–722 (2012). https://doi.org/10.1007/s10836-012-5325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-012-5325-0

Keywords

Navigation