Skip to main content
Log in

A Non-Enumerative Technique for Measuring Path Correlation in Digital Circuits

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

The correlation between the physical paths of a digital circuit has important implications in various design automation problems, such as timing analysis, test generation and diagnosis. When considering the complexity and tight timing constraints of modern circuits, this correlation affects both the design process and the testing approaches followed in manufacturing. In this work we quantify the diversity of a set of paths (or path segments), let these be critical I/O paths, error propagation paths for various fault models, or paths traced for diagnostic purposes. Circuit paths are encoded using Zero-Suppressed Binary Decision Diagrams (ZBDDs); the proposed method consists of a sequence of standard ZBDD operations to provide a measure of the overlap of the paths under consideration. The main contribution of the presented method is that, path or path segment enumeration is entirely avoided and, hence, a large number of paths can be considered in practical time. Experimentation using standard benchmark circuits demonstrates the effectiveness of the approach in showing the difference in path correlation between various critical I/O path sets as well as propagation paths during test application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ababei C, Navaratnasothie S, Bazargan K, Karypis G (2002) Multi-objective circuit partitioning for cutsize and path-based delay minimization. In: IEEE/ACM international conference on computer aided design, pp 181–185. doi:10.1109/ICCAD.2002.1167532

  2. Christou K, Michael M, Neophytou S (2010) Identification of critical primitive path delay faults without any path enumeration. In: IEEE VLSI test symposium, pp 9–14. doi:10.1109/VTS.2010.5469629

  3. Huang SY, Cheng KT (1999) Errortracer: design error diagnosis based on fault simulation techniques. IEEE Trans Comput-Aided Des Integr Circuits Syst 18(9):1341–1352. doi:10.1109/43.784125

    Article  Google Scholar 

  4. Kim KS, Mitra S, Ryan P (2003) Delay defect characteristics and testing strategies. IEEE Des Test Comput 20(5):8–16. doi:10.1109/MDT.2003.1232251

    Article  Google Scholar 

  5. Krstic A, Jiang YM, Cheng KT (2001) Pattern generation for delay testing and dynamic timing analysis considering power-supply noise effects. IEEE Trans Comput-Aided Des Integr Circuits Syst 20(3):416–425. doi:10.1109/43.913759

    Article  Google Scholar 

  6. Kumar M, Tragoudas S (2007) High-quality transition fault ATPG for small delay defects. IEEE Trans Comput-Aided Des Integr Circuits Syst 26(5):983–989. doi:10.1109/TCAD.2006.884863

    Article  Google Scholar 

  7. Lin X, Tsai KH, Wang C, Kassab M, Rajski J, Kobayashi T, Klingenberg R, Sato Y, Hamada S, Aikyo T (2006) Timing-aware ATPG for high quality at-speed testing of small delay defects. In: Proceedings of the 15th Asian test symposium, ATS ’06. IEEE Computer Society, Washington, DC, pp 139–146. doi:10.1109/ATS.2006.81

  8. McCluskey E, Tseng CW (2000) Stuck-fault tests vs. actual defects. In: Proceedings. International test conference, pp 336–342. doi:10.1109/TEST.2000.894222

  9. Minato S (1993) Zero-suppressed bdds for set manipulation in combinatorial problems. In: Design automation conference, pp 272–277. doi:10.1109/DAC.1993.203958

  10. Minato S (1996) Binary decision diagrams and applications for VLSI CAD, vol 342. Springer

  11. Neophytou S, Michael M (2007) Hierarchical fault compatibility identification for test generation with a small number of specified bits. In: IEEE international symposium on defect and fault-tolerance in VLSI systems, pp 439–447. doi:10.1109/DFT.2007.46

  12. Neophytou S, Michael M, Christou K (2009) Generating diverse test sets for multiple fault detections based on fault cone partitioning. In: IEEE international symposium on defect and fault tolerance in VLSI systems, pp 401–409. doi:10.1109/DFT.2009.24

  13. Padmanaban S, Michael M, Tragoudas S (2003) Exact path delay fault coverage with fundamental ZBDD operations. IEEE Trans Comput-Aided Des Integr Circuits Syst 22(3):305–316. doi:10.1109/TCAD.2002.807891

    Article  Google Scholar 

  14. Pomeranz I, Reddy S (2007) Forming N-detection test sets without test generation. ACM Trans Des Autom Electron Syst (TODAES) 12(2):18

    Article  Google Scholar 

  15. Smith G (1985) Model for delay faults based upon paths. In: Proc. of ITC, pp 342–349

  16. Somenzi F (2005) CUDD: CU decision diagram package release 2.4.1. University of Colorado at Boulder

  17. Tang H, Chen G, Reddy S, Wang C, Rajski J, Pomeranz I (2005) Defect aware test patterns. In: Proceedings of design, automation and test in Europe, vol 1, pp 450–455. doi:10.1109/DATE.2005.110

  18. Tani S, Teramoto M, Fukazawa T, Matsuhiro K (1998) Efficient path selection for delay testing based on partial path evaluation. In: Proceedings. 16th IEEE VLSI test symposium, pp 188–193. doi:10.1109/VTEST.1998.670867

  19. Tayade R, Abraham JA (2009) Critical path selection for delay testing considering coupling noise. J Electron Test Theory Appl 25(4–5):213–223. doi:10.1007/s10836-009-5105-7

    Article  Google Scholar 

  20. Tayade R, Sundereswaran S, Abraham J (2007) Small-delay defect detection in the presence of process variations. In: 8th international symposium on quality electronic design. ISQED ’07, pp 711–716. doi:10.1109/ISQED.2007.145

  21. Waicukauski J, Lindbloom E (1989) Failure diagnosis of structured vlsi. IEEE Des Test Comput 6:49–60. doi:10.1109/54.32421

    Article  Google Scholar 

  22. Yilmaz M, Chakrabarty K, Tehranipoor M (2010) Test-pattern selection for screening small-delay defects in very-deep submicrometer integrated circuits. IEEE Trans Comput-Aided Des Integr Circuits Syst 29(5):760–773. doi:10.1109/TCAD.2010.2043591

    Article  Google Scholar 

  23. Zolotov V, Xiong J, Fatemi H, Visweswariah C (2010) Statistical path selection for at-speed test. IEEE Trans Comput-Aided Des Integr Circuits Syst 29(5):749–759. doi:10.1109/TCAD.2010.2043570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios N. Neophytou.

Additional information

Responsible Editor: C. Metra

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Project NEA Υ ⊓OΔOMH/ΣTPATH/0308/26).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neophytou, S.N., Christou, K. & Michael, M.K. A Non-Enumerative Technique for Measuring Path Correlation in Digital Circuits. J Electron Test 28, 843–856 (2012). https://doi.org/10.1007/s10836-012-5333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-012-5333-0

Keywords

Navigation