Skip to main content
Log in

Testing and Diagnosis of Digital Microfluidic Biochips using Multiple Droplets

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Digital microfluidic biochip is a promising alternative to the traditional cumbersome laboratory equipment. Such automated biochips are used in many critical applications. Hence dependability is an essential attribute before the chip is in use. Due to mixed integration technologies, these chips have some unique failures. Hence robust offline and online tests are proposed to check the health of the biochips. When a chip undergoes a test in offline mode, then the entire biochip should be available for testing, whereas for the online mode test droplet might be stalled due to unavailability of the next cell in the routing path. However, in both the scenarios one or more droplets route across the chip and the arrival time is also recorded at the destination. So here we have proposed two test schemes to know the correctness of any biochip. Diagnosability is an important feature to find the exact position of the faulty electrode. Our proposed scheme reduces the overall testing and diagnosis time significantly. It also provides an alternative routing path in biochip for fault tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boles DJ, Benton JL, Siew GJ, Levy MH, Thwar PK, Sandahl MA, Rouse JL, Perkins LC, Sudarsan AP, Jalili R, et al. (2011) Droplet-based pyrosequencing using digital microfluidics. Analytical chemistry 83(22):8439–8447

    Article  Google Scholar 

  2. Das S, Roy S, Dey S (2014) Activation of control pins for routing of test droplets within a bi-partitioned digital microfluidic biochip. In: Fourth International Conference on Advances in Computing and Communications, pp 121–124. IEEE

  3. Datta S, Joshi B, Ravindran A, Mukherjee A (2009) Efficient parallel testing and diagnosis of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems (JETC) 5(2):1–17

    Article  Google Scholar 

  4. Dinh TA, Yamashita S, Ho T-Y, Chakrabarty K (2015) A general testing method for digital microfluidic biochips under physical constraints. In: IEEE International Test Conference (ITC), pp 1–8. IEEE

  5. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible?. Microfluid Nanofluid 3 (3):245–281

    Article  Google Scholar 

  6. Ghosh S, Rahaman H, Giri C (2018) Optimized concurrent testing of digital microfluidic biochips. In: 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID), pp 453–454. IEEE

  7. Ghosh S, Rahaman H, Giri C (2018) Test diagnosis of digital microfluidic biochips using image segmentation. In: IEEE 27th Asian Test Symposium (ATS), pp 185–190. IEEE

  8. Gong M, Kim C-J (2005) Two-dimensional digital microfluidic system by multilayer printed circuit board. In: 18th IEEE International Conference on Micro Electro Mechanical Systems, pp 726–729. IEEE

  9. Huang X, Xu C, Zhang L (2020) An efficient algorithm for optimizing the test path of digital microfluidic biochips. J Electron Test, pp 1–14

  10. Itai A, Papadimitriou CH, Szwarcfiter JL (1982) Hamilton paths in grid graphs. SIAM J Comput 11(4):676–686

    Article  MathSciNet  Google Scholar 

  11. Jokerst NM, Luan L, Palit S, Royal M, Dhar S, Brooke M, TylerII T (2009) Progress in chip-scale photonic sensing. IEEE transactions on biomedical circuits and systems 3(4):202–211

    Article  Google Scholar 

  12. Li Z, Dinh TA, Ho T-Y, Chakrabarty K (2014) Reliability-driven pipelined scan-like testing of digital microfluidic biochips. In: 23rd Asian Test Symposium, pp 57–62. IEEE

  13. Li Z, Lai K Y-T, Yu P-H, Chakrabarty K, Ho T-Y, Lee C-Y (2016) Built-in self-test for micro-electrode-dot-array digital microfluidic biochips. In: 2016 IEEE International Test Conference (ITC), pp IEEE1–10. IEEE

  14. Luo Y, Chakrabarty K, Ho T-Y (2013) Error recovery in cyberphysical digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(1):59–72

    Article  Google Scholar 

  15. Majumder M, Dolai U, Bhattacharya A (2017) An efficient novel single fault and its location detection technique using multiple droplets in a digital microfluidic biochip. In: 11th International Conference on Intelligent Systems and Control (ISCO), pp 119–124. IEEE

  16. Miller EM, Wheeler AR (2009) Digital bioanalysis. Analytical and bioanalytical chemistry 393(2):419–426

    Article  Google Scholar 

  17. Mitra D, Ghoshal S, Rahaman H, Bhattacharya BB, Majumder DD, Chakrabarty K (2008) Accelerated functional testing of digital microfluidic biochips. In: 17th Asian Test Symposium, pp 295–300. IEEE

  18. Paşaniuc B, Garfinkel R, Măndoiu I, Zelikovsky A (2011) Optimal testing of digital microfluidic biochips. INFORMS J Comput 23(4):518–529

    Article  MathSciNet  Google Scholar 

  19. Pollack MG (2001) Electrowetting-based microactuation of droplets for digital microfluidics. Ph.D. Thesis, Duke University

  20. Saha S, Chakraborti A, Roy S (2010) An efficient single-fault detection technique for micro-fluidic based biochips. In: International Conference on Advances in Computer Engineering, pp 10–14. IEEE

  21. Schasfoort RichardBM, Schlautmann S, Hendrikse J, Van DenBerg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286(5441):942–945

    Article  Google Scholar 

  22. Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321(1-2):1–10

    Article  Google Scholar 

  23. Shin Y-J, Lee J-B (2010) Machine vision for digital microfluidics. Rev Sci Instrum 81(1):014302

    Article  Google Scholar 

  24. Shukla V, Hussin FA, Hamid NH, Ali N BZ, Chakrabarty K (2017) Offline error detection in meda-based digital microfluidic biochips using oscillation-based testing methodology. J Electron Test 33(5):621–635

    Article  Google Scholar 

  25. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091–2104

    Article  Google Scholar 

  26. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310– 315

    Article  Google Scholar 

  27. Su F, Chakrabarty K (2006) Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques. CRC Press

  28. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips. In: Proceedings of the Design Automation & Test in Europe Conference, 1, pp 1–6. IEEE

  29. Su F, Hwang W, Mukherjee A, Chakrabarty K (2005) Defect-oriented testing and diagnosis of digital microfluidics-based biochips. In: IEEE International Conference on Test, pp 10–pp. IEEE

  30. Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and diagnosis of realistic defects in digital microfluidic biochips. J Electron Test 23(2-3):219–233

    Article  Google Scholar 

  31. Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microelectrofluidic systems. In: International Test Conference Proceedings, pp 1192–1200. IEEE

  32. Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sensors J 5(4):763–773

    Article  Google Scholar 

  33. Su F, Ozev S, Chakrabarty K (2006) Test planning and test resource optimization for droplet-based microfluidic systems. J Electron Test 22(2):199–210

    Article  Google Scholar 

  34. Verpoorte E, DeRooij NICOF (2003) Microfluidics meets mems. Proc IEEE 91(6):930–953

    Article  Google Scholar 

  35. Xu T, Chakrabarty K (2007) Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems 1(2):148–158

    Article  Google Scholar 

  36. Zhong Z, Chakrabarty K (2019) Fault recovery in micro-electrode-dot-array digital microfluidic biochips using an ijtag networkbehaviors. In: 2019 IEEE International Test Conference (ITC), pp 1–10. IEEE

  37. Zhong Z, Li Z, Chakrabarty K, Ho T-Y, Lee C-Y (2018) Micro-electrode-dot-array digital microfluidic biochips: Technology, design automation, and test techniques. IEEE Transactions on Biomedical Circuits and Systems 13(2):292–313

    Article  Google Scholar 

  38. Zhong Z, Zhu H, Zhang P, Morizio J, Huang TJ, Chakrabarty K (2019) Hardware design and experimental demonstrations for digital acoustofluidic biochips. In: 2019 IEEE Biomedical circuits and systems conference (BioCAS), pp 1–4. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Ghosh.

Additional information

Responsible Editor: K. Chakrabarty

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Roy, S.K. & Giri, C. Testing and Diagnosis of Digital Microfluidic Biochips using Multiple Droplets. J Electron Test 37, 109–126 (2021). https://doi.org/10.1007/s10836-020-05924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-020-05924-y

Keywords

Navigation