Abstract
Motivated by the importance of fault tolerance in quantum computing, there has been renewed interest in quantum circuits that are realized with Clifford+T gates. Quantum computers that are based on ion-trap technology, superconducting, and quantum dots need to fulfill certain nearest-neighbor (NN) constraints. Fault-tolerant implementations of quantum circuits also require restricted interactions among neighboring quantum bits. The insertion of SWAP-gates is often deployed to make quantum circuits nearest-neighbor (NN) compliant. As quantum operations are prone to various errors, it is important to reduce the nearest-neighbor cost (NNC) which is a marker to the number of SWAP-gates needed to make a quantum circuit NN-compliant. Such an optimization problem arises while synthesizing reversible circuits using the Kronecker functional decision diagram (KFDD). In this work, we propose a method based on KFDD that reduces NNC during synthesis. Considering the Clifford+T quantum mapping for NOT, CNOT, and Toffoli (NCT) gates, and mixed-polarity Peres (MPP) gates, NNC metrics are defined for reversible circuits. Governed by NNC metrics, the nodes are then ranked for reducing NNC in resulting reversible circuits. Furthermore, local transformations are applied on node functions while mapping a node to a cascade of reversible gates. Experimental results on several benchmark functions reveal that the proposed synthesis technique reduces NNC in many cases while slightly impacting the number of qubits, T-depth, and T-count. Compared to prior methods based on functional decision diagrams or binary decision diagrams, the proposed synthesis technique reduces quantum cost for NCV-realizations (i.e., with NOT, CNOT, V, and V\(^\dagger\) gates) in most of the cases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
All data generated or analyzed during this study are within the paper.
References
Abdalhaq BK, Awad A, Hawash A (2020) Reversible logic synthesis using binary decision diagrams with exploiting efficient reordering operators. IEEE Access 8:156001–156016
Abdessaied N, Drechsler R (2016) Reversible and Quantum Circuits: Optimization and Complexity Analysis. Springer International Publishing AG
Bu D, Wang P (2019) An improved KFDD based reversible circuit synthesis method. Integr VLSI J 69:251–265
Deb A, Dueck GW, Wille R (2021) Exploring the potential benefits of alternative quantum computing architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 40(9):1825–1835
Ding J, Yamashita S (2020) Exact synthesis of nearest neighbor compliant quantum circuits in 2-D architecture and its application to large-scale circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 39(5):1045–1058
Drechsler R, Becker B (1998) Ordered Kronecker functional decision diagrams-a data structure for representation and manipulation of Boolean functions. IEEE Trans Comput Aided Des Integr Circuits Syst 17(10):965–973
Fazel K, Thornton MA, Rice JE (2007) ESOP-based toffoli gate cascade generation. In: Proc. 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. pp 206–209
Gupta P, Agrawal A, Jha NK (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 25(11):2317–2330
Kole A, Hillmich S, Datta K, Wille R, Sengupta I (2020) Improved mapping of quantum circuits to IBM QX architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 39(10):2375–2383
Kole A, Datta K, Sengupta I (2016) A heuristic for linear nearest neighbor realization of quantum circuits by swap gate insertion using N-gate lookahead. IEEE J Emerg Sel Top Circuits Syst 6(1):62–72
Kole A, Datta K, Sengupta I, Wille R (2015) Towards a cost metric for nearest neighbor constraints in reversible circuits. In: Proc. International Conference on Reversible Computation. pp 273–278
Li S, Zhou X, Feng Y (2021) Qubit mapping based on subgraph isomorphism and filtered depth-limited search. IEEE Trans Comput 70(11):1777–1788
Lin CC, Jha NK (2014) RMDDS: Reed-Muller decision diagram synthesis of reversible logic circuits. ACM J Emerg Technol Comput Syst 10(2): Article 14, 25 pages
Meter RV, Oskin M (2006) Architectural implications of quantum computing technologies. ACM J Emerging Technologies Comp Syst 2(1):31–63
Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: Proc. the 40th Annual Design Automation Conference. pp 318–323
Nielsen MA, Chuang IL (2010) Quantum Computation and Quantum Information: 10th, Anniversary. Cambridge University Press, New York, USA
Niemann P, Bandyopadhyay C, Drechsler R (2021) Combining SWAPs and remote Toffoli gates in the mapping to IBM QX architectures. In: Proc. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp 200–205
Niemann P, Gupta A, Drechsler R (2019) T-depth optimization for fault-tolerant quantum circuits. In: Proc. 2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL). pp 108–113
Saeedi M, Wille R, Drechsler R (2011) Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf Process 10(3):355–377
Sasao T (1999) Switching Theory for Logic Synthesis. Springer, Boston, MA
Soeken M, Roetteler M, Wiebe N, Micheli GD (2019) LUT-based hierarchical reversible logic synthesis. IEEE Trans Comput Aided Des Integr Circuits Syst 38(9):1675–1688
Soeken M, Wille R, Drechsler R (2010) Hierarchical synthesis of reversible circuits using positive and negative davio decomposition. In: Proc. 2010 5th International Design and Test Workshop (IDT). pp 143–148
Stojković S, Stanković R, Moraga C, Stanković M (2020) Reversible circuits synthesis from functional decision diagrams by using node dependency matrices. J Circuits Syst Comput 29(5): Article 2050079, 32 pages
Wille R, Drechsler R (2009) BDD-based synthesis of reversible logic for large functions. In: Proc. the 46th Annual Design Automation Conference. pp 270–275
Wille R, Große D, Teuber L, Dueck GW, Drechsler R (2008) RevLib: an online resource for reversible functions and reversible circuits. In: Proc. 38th International Symposium on Multiple Valued Logic. pp 220–225
Wille R, Lye A, Drechsler R (2014) Considering nearest neighbor constraints of quantum circuits at the reversible circuit level. Quantum Inf Process 13(2):185–199
Wille R, Lye A, Drechsler R (2014) Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 33(12):1818–1831
Wille R, Drechsler R (2010) Towards a Design Flow for Reversible Logic. Springer, Dordrecht
Zulehner A, Wille R (2018) One-pass design of reversible circuits: combining embedding and synthesis for reversible logic. IEEE Trans Comput Aided Des Integr Circuits Syst 37(5):996–1008
Soeken M, Frehse S, Wille R, Drechsler R (2011) RevKit: an open source toolkit for thedesign of reversible circuits. In: Proc. International Conference on Reversible Computation. pp 64–76
Funding
This work was supported by the National Natural Science Foundation of China (No.61961023), the Jiangxi Provincial Natural Science Foundation (No.20202BABL202007), the Guangxi Natural Science Foundation (No.2021GXNSFAA220046), and the Doctoral Foundation of Guangxi University of Science and Technology (No.21Z04).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interests
The authors declare that they have no conflicts of interest to this work.
Competing Interests
The authors declare that they have no competing interests.
Additional information
Responsible Editor: B. B. Bhattacharya
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bu, D., Yan, J., Tang, P. et al. Synthesis of Reversible Circuits with Reduced Nearest-Neighbor Cost Using Kronecker Functional Decision Diagrams. J Electron Test 38, 39–62 (2022). https://doi.org/10.1007/s10836-022-05987-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10836-022-05987-z