Skip to main content
Log in

Comparison of the Output Parameters of the Memristor-based Op-amp Model and the Traditional Op-amp Model

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

A new operational amplifier (op-amp) model has been proposed using a memristor emulator based on the linear TiO2 drift model. Simulation studies and numerical analyses of the new op-amp model designed using memristor are given. Frequency, unit, switching and electrical characteristic tests of the proposed op-amp model were performed. The parameter comparisons of the traditional op-amp and the proposed op-amp model are given in a detail table. In addition, the efficiency of the proposed op-amp model was realized with application circuits, and the reliability of the system was verified with the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Authors declare the transparency of the data used in their articles.

Code Availability

Not applicable.

References

  1. Adhikari SP, Sah MP, Kim H, Chua LO (2013) Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I 60(11):3008–3021. https://doi.org/10.1109/TCSI.2013.2256171

    Article  Google Scholar 

  2. Anonymous (2020) Operational amplifier. https://en.wikipedia.org/wiki/Operational_amplifier#Internal_circuitry_of_741-type_op_amp. Accessed 2 June 2020

  3. Barbarosou M, Paraskevas I, Kliros G, Andreatos A (2017) Implementing transistor roles for facilitating analysis and synthesis of analog integrated circuits. In: Proc. 2017 IEEE Global Engineering Education Conference (EDUCON), pp 423–430. https://doi.org/10.1109/EDUCON.2017.7942881

  4. BC237/BC238/BC239 (1997) NPN Epitaxial Silicon Transistor, Fairchild Semiconductor

  5. Boylestad R L, Louis N (2015) Electronic Devices and Circuit Theory, Palme Publishing, 10th Edition, Ankara

  6. Bruun E (1995) Bandwidth optimization of a low power, high speed CMOS current op-amp. Analog Integr Circ Sig Process 7(1):11–19. https://doi.org/10.1007/BF01256443

    Article  Google Scholar 

  7. Chua L (1971) Memristor-the missing circuit element. IEEE Transactions on Circuit Theory 18(5):507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  8. Comer DT, Comer DJ, Li L (2010) A high-gain complementary metal-oxide semiconductor op amp using composite cascode stages. Int J Electron 97(6):637–646. https://doi.org/10.1080/00207211003646928

    Article  Google Scholar 

  9. Elsamman AH, Radwan AG, Madian AH (2014) Resistorless memristor based oscillator. In: Proc. 26th International Conference on Microelectronics (ICM), pp 168–171. https://doi.org/10.1109/ICM.2014.7071833

  10. Huijsing JH (1993) Design and applications of the operational floating amplifier (OFA): The most universal operational amplifier. Analog Integ Circuits and Signal Proc 4(2):115–129. https://doi.org/10.1007/BF01254863

  11. Information D, Schematic S (2018) µA741 general-purpose operational amplifiers, Texas Instruments

  12. Jahromi MR, Shamsi J, Amirsoleimani A, Mohammadi K, Ahmadi M (2017) Ultra-low power Op-Amp design with memristor-based compensation. In: Proc. 30th Canadian Conference on Electrical and Comp Eng (CCECE), pp 1–4. https://doi.org/10.1109/CCECE.2017.7946785

  13. Jung W (2005) Op-Amp applications handbook. Newnes

  14. Kapil A, Shah A, Agarwal R, Sharma S (2012) Analysis and comparative study of different parameters of operational amplifier using bipolar junction transistor and complementary metal oxide semiconductor using tanner tools. Int J Soft Computing Eng 2(5):19–23

    Google Scholar 

  15. Kennedy MP (1992) Robust Op Amp Realization of Chua’s Circuit. Frequenz 46:66–80. https://doi.org/10.1515/FREQ.1992.46.3-4.66

    Article  Google Scholar 

  16. Kim H, Sah MP, Yang C, Cho S, Chua LO (2012) Memristor emulator for memristor circuit applications. IEEE Trans Circuits Syst I Regul Pap 59(10):2422–2431. https://doi.org/10.1109/TCSI.2012.2188957

    Article  MathSciNet  MATH  Google Scholar 

  17. Klinke R, Hosticka B J, Pfleiderer H (1989) A very-high-slew-rate CMOS operational amplifier.IEEE J Solid-State Cir 24(3):744–746. https://doi.org/10.1109/4.32035

  18. Kuthiala A, Agarwal A, Gupta A, Jain S (2013) Voltage feedback vs Current feedback operational amplifier using BJT and CMOS. Int J Adv Computing Information Technol 2(2):9–16

    Article  Google Scholar 

  19. Kyriakides E, Georgiou J (2015) A compact, low-frequency, memristor-based oscillator. Int J Circuit Theory Appl 43(11):1801–1806. https://doi.org/10.1002/cta.2030

    Article  Google Scholar 

  20. Li L (2007) High gain low power operational amplifier design and compensation techniques. A Dissertation of department of Electrical and Computer Engineering, Brigham Young University

  21. LM741 Operational Amplifier (1998) Texas Instruments

  22. López-Sánchez C, Carrasco-Aguilar M A, Muñiz-Montero C (2015) A 16Hz–160kHz memristor emulator circuit. AEU-Int J Electronics and Comm 69(9):1208–1219. https://doi.org/10.1016/j.aeue.2015.05.003

  23. Mancini R (2003) Op-amps for everyone: design reference. Newnes

    Google Scholar 

  24. Magnelli L, Amoroso FA, Crupi F, Cappuccino G, Iannaccone G (2014) Design of a 75‐nW, 0.5‐V subthreshold complementary metal–oxide–semiconductor operational amplifier. Int J Circuit Theory and App 42(9):967–977. https://doi.org/10.1002/cta.1898

  25. Mehta H, Agarwal N, Dutt K, Jain S (2013) Effect of current feedback operational amplifiers using BJT and CMOS. Int J Adv Res Computer Sci Software Eng 3(4):1081–1087. https://doi.org/10.6088/ijacit.22.10002

    Article  Google Scholar 

  26. Muthuswamy B (2010) Implementing memristor based chaotic circuits. Int J Bifurcation and Chaos 20(5):1335–1350. https://doi.org/10.1142/S0218127410026514

    Article  MATH  Google Scholar 

  27. Mutlu R, Karakulak E (2009) A memristor (Memory Resistor) emulator circuit that can be used in engineering education. Electrical Electron Comp Eng Education Symposium

  28. Mutlu R, Karakulak E (2018) Memristor-based phase shifter. In:Proc. 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp 1–5. https://doi.org/10.1109/ISMSIT.2018.8567280

  29. Parlar I, Almali MN (2016) Investigation of the characteristics analysis of different memristor types. In: Proc. 1st International Energy & Engineering Conference, IEEC, pp 784–785

  30. Parlar I, Almali MN (2017) Evaluation of different types of memristor emulator circuits in terms of frequency. In: Proc. 13th International Conference on “Technical and Physical Problems of Electrical Engineering”, IJTPE, 36, pp 188–191

  31. Pershin YV, Di Ventra M (2010) Memristive circuits simulate memcapacitors and meminductors. Electron Lett 46(7):517–518. https://doi.org/10.1049/el.2010.2830

    Article  Google Scholar 

  32. Pershin YV, Di Ventra M (2010) Practical approach to programmable analog circuits with memristors. IEEE Trans Circuits Syst I Regul Pap 57(8):1857–1864. https://doi.org/10.1109/TCSI.2009.2038539

    Article  MathSciNet  Google Scholar 

  33. Ranjan RK, Sagar S, Roushan S, Kumari B, Rani N, Khateb F (2019) High-frequency floating memristor emulator and its experimental results. IET Circuits Devices Syst 13(3):292–302. https://doi.org/10.1049/iet-cds.2018.5191

    Article  Google Scholar 

  34. Şahin ME, Karakaya B, Güler H, Gülten A, Hamamci SE (2020) Memristor based filter design and implementation for ECG signal. Bitlis Eren University J Sci 9(2):756–765. https://doi.org/10.17798/bitlisfen.582480

  35. Sahu R, Konar M, Kundu S (2020) Improvement of gain accuracy and CMRR of low power ınstrumentation amplifier using high gain operational amplifiers. Micro and Nanosystems 12(3):168–174. https://doi.org/10.2174/1876402912666200123153318

    Article  Google Scholar 

  36. Sánchez-López C, Mendoza-Lopez J, Carrasco-Aguilar M A, Muñiz-Montero C (2014) A floating analog memristor emulator circuit.IEEE Transactions on Circuits and Systems II: Express Briefs 61(5):309–313. https://doi.org/10.1109/TCSII.2014.2312806

  37. Sharma VK, Ansari MS, Joshi AM (2017) Memristor-based high performance third order quadrature oscillator. In: Proc. TENCON IEEE Region 10th Conference, pp 2949–2954. https://doi.org/10.1109/TENCON.2017.8228367

  38. Singh AK, Goyal N (2014) Study and analysis of power dissipation and different operational amplifier (Op-Amp) parameters of BJT (741) Op-Amp and CMOS Op-Amp using T-SPICE. Int J Science Res 3(8):873–876

    Google Scholar 

  39. Solomon JE (1974) The monolithic op amp: A tutorial study. IEEE J Solid-State Circuits 9(6):314–332. https://doi.org/10.1109/JSSC.1974.1050524

    Article  Google Scholar 

  40. Sözen H, Çam U (2015) New memristor emulator circuit using OTAs and CCIIs. In:Proc. 9th International Conference on Electrical and Electronics Engineering (ELECO), pp 10–14. https://doi.org/10.1109/ELECO.2015.7394456

  41. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80–83. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  42. Tripathy D, Bhadra P (2018) A high speed two stage operational amplifier with high CMRR. In: Proc. 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp 255–259. https://doi.org/10.1109/RTEICT42901.2018.9012268

  43. Varghese D, Gandhi G (2009) Memristor based high linear range differential pair. In: Proc. International Conference on Communications, Circuits and Systems, pp 935–938. https://doi.org/10.1109/ICCCAS.2009.5250373

  44. Vista J, Ranjan A (2019) A simple floating MOS-memristor for high-frequency applications. IEEE Trans Very Large Scale Integration (VLSI) Sys 27(5):1186–1195. https://doi.org/10.1109/TVLSI.2018.2890591

  45. Yağımlı M, Akar F (1999) Electronic. BETA Publishing, Istanbul

    Google Scholar 

  46. Yang C, Choi H, Park S, Sah MP, Kim H, Chua LO (2014) A memristor emulator as a replacement of a real memristor. Semicond Sci Technol 30(1):015007. https://doi.org/10.1088/0268-1242/30/1/015007

    Article  Google Scholar 

  47. Yu Q, Qin Z, Yu J, Mao Y (2009) Transmission characteristics study of memristors based op-amp circuits. In: Proc. International conference on communications, circuits and systems, pp 974–977. https://doi.org/10.1109/ICCCAS.2009.5250356

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

İshak Parlar: Writing-Reviewing and Editing, Conceptualization, Methodology, Visualization, Investigation. M. Nuri Almalı: Supervision, Writing- Original draft preparation, Validation, Writing- Original draft preparation, Data curation.

Corresponding author

Correspondence to İshak Parlar.

Ethics declarations

Conflicts of Interest and Competing interests

The authors declare that they have no potential competitive interests/personal relationships.

Additional information

Responsible Editor: S. Sindia

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parlar, İ., Almali, M.N. Comparison of the Output Parameters of the Memristor-based Op-amp Model and the Traditional Op-amp Model. J Electron Test 38, 131–143 (2022). https://doi.org/10.1007/s10836-022-05991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-022-05991-3

Keywords

Navigation