Skip to main content
Log in

Investigation of Single Event Effects in a Resistive RAM Memory Array by Coupling TCAD and SPICE Simulations

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Resistive Random Access Memory (RRAM) are attractive candidates to overcome power, cost and integration density limitations of conventional memories. They are emerging non-volatile memories, based on resistive switching mechanisms. Due to their intrinsic structure, RRAMs technology is known to exhibit very good tolerance to radiation. In this context, this paper proposes to investigate Single Event Effects in RRAM arrays, for particles with different characteristics: a 0.6 MeV Alpha and a 1.47 MeV Aluminum. The decoding circuitry of the memory array, including bit line and source line drivers is targeted. Currents shapes generated by Alpha and Aluminum particles are obtained from TCAD simulations to propose realistic SPICE simulations. Worst cases scenarios are studied in order to point out the most sensitive configurations able to induce Single Event Effects (SEE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statements

Only supporting data related to electrode outputs could be available from the corresponding author, upon reasonable request.

References

  1. Akkerman A, Barak J, Emfietzoglou D (2005) Ion and electron track- structure and its effects in silicon: model and calculation. Nucl Instrum Methods Phys Res pp 319–336

  2. Aziza H, Bocquet M, Portal JM, Muller C (2011) Bipolar OxRAM memory array reliability evaluation based on fault injection. Proc IDT 2011

  3. Baek IG, Kim DC, Lee MJ, Kim HJ, Yim EK, Lee MS, Lee JE, Ahn SE, Seo S, Lee JH, Park JC (2005) Multi-layer cross-point binary oxide resistive memory (OxRAM) for post-NAND storage application. IEDM Tech Dig pp 750–753

  4. Bennett WG, Hooten NC, Schrimpf RD, Reed RA, Mendenhall MH, Alles ML, Bi J, Zhang EX, Linten D, Jurzak M, Fantini A (2014) Single- and multiple-event induced upsets in HfO2/Hf 1T1R RRAM. IEEE Trans Nuclear Sci 61(4):1717–1725

  5. Bi J, Duan Y, Xi K, Li B (2018) Total ionizing dose and single event effects of 1 Mb HfO2-based resistive-random-access memory. Microelectron Reliab 88–90:891–897

  6. Bi JS, Han ZS, Zhang EX, McCurdy MW, Reed RA, Schrimpf RD, Fleetwood DM, Alles ML, Weller RA, Linten D, Jurczak M (2013) Fantini The impact of X-ray and proton irradiation on HfO2/Hf-based bipolar resistive memories. IEEE Trans Nucl Sci 60(6):4540–4546

    Article  Google Scholar 

  7. Bocquet M, Deleruyelle D, Muller C, Portal JM (2011) Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl Phys Lett 98:(26)263507(1–3)

  8. Bocquet M, Aziza H, Zhao W, Zhang Y, Onkaraiah S, Muller C, Reyboz M, Deleruyelle D, Clermidy F, Portal JM (2014) Compact Modeling Solutions for Oxide-Based Resistive Switching Memories (OxRAM). J Low Power Electron Appl 4(1):1–14

  9. Butcher B, He X, Huang M, Wang Y, Liu Q, Lv H, Liu M, Wang W (2010) Proton-based total-dose irradiation effects on Cu/HfO2:Cu/Pt RRAM devices. Proc IOP Nanotechnol

  10. Castellani-Coulié K, Bocquet M, Aziza H, Portal JM, Rahajandraibe W, Muller C (2013) SPICE level analysis of Single Event Effects in an OxRRAM cell. 14th Latin American Test Workshop - LATW pp 1–5. https://doi.org/10.1109/LATW.2013.6562684

  11. Castellani-Coulié K, Aziza H, Rahajandraibe W, Micolau G, Portal JM (2013) Portal, "Development of a CMOS Oscillator Concept for Particle Detection and Tracking". IEEE Trans Nuclear Sci 60(4):2450–2455. https://doi.org/10.1109/TNS.2013.2254723

  12. Castellani-Coulié K, Bocquet M, Aziza H, Portal JM, Rahajandraibe W, Muller C (2012) Analysis of Single Event Effects in an OxRRAM cell by using SPICE level simulations. Radiation and its Effects on Components and Systems (RADECS) Biarritz (France) pp 24–28

  13. Castellani-Coulie K, Portal JM, Micolau G, Aziza H (2011) Analysis of SEU parameters for the study of SRAM cells reliability under radiation. Proceedings of 2011 12th Latin American Test Workshop (LATW) pp 1–5. https://doi.org/10.1109/LATW.2011.5985895

  14. Castellani-Coulie K, Toure G, Portal J, Ginez O, Aziza H, Lesea A (2011) Circuit Effect on Collection Mechanisms Involved in Single Event Phenomena: Application to the Response of a NMOS Transistor in a 90 nm SRAM Cell. IEEE Trans Nucl Sci 58(3):870–876. https://doi.org/10.1109/TNS.2011.2129575

    Article  Google Scholar 

  15. Douin A, Pouget V, Darracq F, Lewis D, Fouillat P, Perdu P (2006) Influence of Laser Pulse Duration in Single Event Upset Testing. IEEE TNS 53(4)

  16. Fang R, Gonzalez Velo Y, Chen W, Holbert KE, Kozicki MN, Barnaby H, Yu S (2014) Total ionizing dose effect of γ-ray radiation onthe switching characteristics and filament stability of HfOxresistiverandom access memory. Appl Phys Lett 104(18):183507

  17. Fulkerson DE, Vogt EE (2005) Prediction of SOI Single-Event Effect Using a Simple Physics-Based SPICE Model. IEEE TNS

  18. Fieback M, Wu L, Medeiros GC, Aziza H, Rao S, Marinissen EJ, Taouil M, Hamdioui S (2019) Device-Aware Test: A New Test Approach Towards DPPB Level. 2019 IEEE International Test Conference (ITC) pp 1–10. https://doi.org/10.1109/ITC44170.2019.9000134

  19. Gerardin S, Paccagnella A (2010) Present and Future Non-Volatile Memories for Space. IEEE Trans Nucl Sc 57(6):3016–3039

  20. Godlewski C, Pouget V, Lewis D, Lisart M (2009) Electrical modeling of the effect of beam profile for pulsed laser fault injection. Micro Reliab

  21. Gonzalez-Velo Y, Barnaby HJ, Kozicki MN (2017) Review of radiation effects on ReRAM devices and technology. Semicond Sci Technol 32(8). https://doi.org/10.1088/1361-6641/aa6124

  22. Grossi A, Vianello E, Zambelli C, Royer P, Noel JP, Giraud B, Perniola L, Olivo P, Nowak E (2018) Experimental investigation of 4-kb RRAM arrays programming conditions suitable for TCAM. IEEE Trans Very Large Scale Integr 26(12):2599–2607

  23. He X, Wang W, Butcher B, Tanachutiwat S, Geer RE (2012) SuperiorTID hardness in TiN/HfO2/TiN RRAMs after proton radiation. IEEE Trans Nucl Sci 59(5):2550–2555

    Article  Google Scholar 

  24. Li Z, Chen PY, Xu H, Yu S (2017) Design of Ternary Neural Network With 3-D Vertical RRAM Array. IEEE Trans Electron Dev pp 1–7. https://doi.org/10.1109/TED.2017.2697361

  25. Markelov VV, Tverskoy MG (2015) Evaluation of LET Spectra Produced by High Energy Protons in Si. RADECS 2015. Moscou, Russia. https://doi.org/10.1109/RADECS.2015.7365592

  26. Mehonic A, Joksas D, Ng WH, Buckwell M, Kenyon AJ (2019) Simulation of inference accuracy using realistic RRAM devices. Front Neurosci 13:593

    Article  Google Scholar 

  27. Peczalski A, Bergman JO, Berndt DA, Lai JC (1988) Physical SEU Model for Circuit Simulation. IEEE TNS 35(6)

  28. Petzold S, Sharath SU, Lemke J, Hildebrandt E, Trautmann C, Alff L (2019) Heavy Ion Radiation Effects on Hafnium Oxide-Based Resistive Random Access Memory. IEEE Trans Nucl Sci 66(7)

  29. Pouget V, Lapuyade H, Lewis D, Deval Y, Fouillat P, Sarger L (2000) SPICE Modeling of the Transient Response of Irradiated MOSFETS. IEEE TNS 47(3)

  30. Roche P, Autran JL, Gasiot G, Munteanu D (2013) Technology downscaling worsening radiation effects in bulk: SOI to the rescue. 2013 IEEE International Electron Devices Meeting, Washington, DC, USA pp 31.1.1–31.1.4. https://doi.org/10.1109/IEDM.2013.6724728

  31. TCAD Sentaurus user’s manual (Synopsys)

  32. Tosson AM, Yu S, Anis MH, Wei L (2017) 1T2R: A novel memory cell design to resolve single-event upset in RRAM arrays. 2017 IEEE 12th International Conference on ASIC (ASICON) pp 12–15. https://doi.org/10.1109/ASICON.2017.8252399

  33. Wang Y, Li Y, Liu Q, Bi J, Liu J, Sun H, Lv H, Long S, Xi K, Liu M (2016) The heavy ion radiation effects on the Pt/HfO2/Ti resistive switching memory. Proceedings of 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS) pp 1–3. https://doi.org/10.1109/RADECS.2016.8093118

  34. Wang Y, Lv H, Wang W, Liu Qi, Long S, Wang Q, Huo Z, Zhang S, Li Y, Zuo Q, Lian W, Yang J, Liu M (2010) Highly Stable Radiation-Hardened Resistive-Switching Memory. IEEE Elec Dev Let 31(12):1470–1472

    Article  Google Scholar 

  35. Weeden-Wright SL, Bennett WG, Hooten NC, Zhang EX, McCurdy MW, King MP, Weller RA, Mendenhall MH, Alles ML, Linten D, Jurczak M, Degraeve R, Fantini A, Reed RF, Daniel S (2014) TID and displacement damage resilienceof 1T1R HfO2/Hf resistive memories. IEEE Trans Nucl Sci 61(6):2972–2978

  36. www.srim.org

  37. Yuan F, Shen S, Zhang Z (2015) γ-ray irradiation effects onTiN/HfOx/Pt resistive random access memory devices. Proc IEEE Aerosp Conf pp 3560–3567

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Coulié.

Ethics declarations

Conflicts of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: L. M. B. Poehls

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulié, K., Aziza, H. & Rahajandraibe, W. Investigation of Single Event Effects in a Resistive RAM Memory Array by Coupling TCAD and SPICE Simulations. J Electron Test 39, 275–288 (2023). https://doi.org/10.1007/s10836-023-06068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-023-06068-5

Keywords

Navigation