Skip to main content
Log in

Null values in fuzzy databases

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Since in the real world, it often occurs that information is missing, database systems clearly need some facilities to deal with missing data. With respect to traditional database systems, the most commonly adopted approach to this problem is based on null values and three valued logic. This paper deals with the semantics and the use of null values in fuzzy databases. In dealing with missing information a distinction is made between incompleteness due to unavailability and incompleteness due to inapplicability. Both the database modelling and database querying aspects are described. With respect to attribute values, incompleteness due to unavailability is modelled by possibility distributions, which is a commonly used technique in the fuzzy databases. Domain specific null values, represented by a bottom symbol, are used to model incompleteness due to inapplicability. Extended possibilistic truth values are used to formalize the impact of data manipulation and (flexible) querying operations in the presence of these null values. The different cases of appearances of null values in the handling of selection conditions of flexible database queries are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • ANSI/X3/SPARC Study Group on Data Base Management Systems (1975). Interim Report. FDT (ACM Sigmod Records), 7(2), 1–140.

    Google Scholar 

  • Arrazola, I., Plainfossé, A., Prade, H., & Testemale, C. (1989). Extrapolation of fuzzy values from incomplete data bases. Information Systems, 14(6), 487–492.

    Article  Google Scholar 

  • Biskup, J. (1981). A formal approach to null values in database relations. In H. Gallaire, J. Minker, & J. Nicolas (Eds.), Advances in Data Base Theory (pp. 299–341). New York, NY: Plenum.

    Google Scholar 

  • Bochvar, D. (1938). Ob odnom trehznachnom iscislenii i ego primenenii k analizu paradoksov klassiceskogo funkcional’nogo iscislenija. Matematiceskij Sbornik, 4, 287–308. English translation: On a three-valued calculus and its applications to the analysis of the paradoxes of the classical extended functional calculus. History and Philosophy of Logic, 2, 87–112, 1981.

    MATH  Google Scholar 

  • Bordogna, G. & Pasi, G. (Eds.) (2000). Recent Issues on Fuzzy Databases. Heidelberg, Germany: Physica-Verlag.

    MATH  Google Scholar 

  • Bosc, P., & Pivert, O. (1992). Some approaches for relational databases flexible querying. International Journal on Intelligent Information Systems, 1, 323–354.

    Article  Google Scholar 

  • Bosc, P. & Kacprzyk, J. (Eds.) (1995). Fuzziness in Database Management Systems. Heidelberg, Germany: Physica-Verlag.

    MATH  Google Scholar 

  • Bosc, P., & Pivert, O. (1995). SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems, 3, 1–17.

    Article  Google Scholar 

  • Bosc, P., & Pivert, O. (2005). About selection–projection–join queries addressed to possibilistic relational databases. IEEE Transactions on Fuzzy Systems, 13, 124–139.

    Article  Google Scholar 

  • Bosc, P., Kraft, D., & Petry, F. (2005). Fuzzy sets in database and information systems: status and opportunities. Fuzzy Sets and Systems, 153(3), 418–426.

    Article  MathSciNet  Google Scholar 

  • Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387. (Republished in Communications of the ACM, 26(1), 1983.)

    Article  MATH  Google Scholar 

  • Codd, E. F. (1975). Understanding relations. FDT (ACM Sigmod Records), 7(3–4), 23–28.

    Google Scholar 

  • Codd, E. F. (1979). RM/T: Extending the relational model to capture more meaning. ACM Transactions on Database Systems, 4(4), 397–434.

    Article  Google Scholar 

  • Codd, E. F. (1986). Missing information (applicable and inapplicable) in relational databases. ACM SIGMOD Record, 15(4), 53–78.

    Article  Google Scholar 

  • Codd, E. F. (1987). More commentary on missing information in relational databases (applicable and inapplicable information). ACM SIGMOD Record, 16(1), 42–50.

    Article  Google Scholar 

  • Dardzinska, A. & Ras, Z. W. (2003). Chasing unknown values in incomplete information systems. In Proc. of ICDM’03 Workshop on Foundations and New Directions of Data Mining (pp. 24–30). Melbourne, FL, USA.

  • Date, C. J. (1986). Null values in database management. In Relational Database: Selected Writings. (pp. 313–334). Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • Date, C. J. (1990a). NOT is not ‘Not’! (notes on three-valued logic and related matters). In Relational Database Writings 1985–1989 (pp. 217–248). Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • Date, C. J. (1990b). EXISTS is not ‘Exists’! (some logical flaws in SQL). In Relational Database Writings 1985–1989 (pp. 339–356). Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • Date, C. J. (1998). Faults and defaults. In C. J. Date, H. Darwen, & D. McGoveran (Eds.), Relational Database Writings 1994–1997. Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • de Caluwe, R. (Ed.) (1997). Fuzzy and Uncertain Object-oriented Databases: Concepts and Models. Singapore: World Scientific.

    MATH  Google Scholar 

  • de Cooman, G. (1995). Towards a possibilistic logic. In D. Ruan (Ed.), Fuzzy Set Theory and Advanced Mathematical Applications (pp. 89–133). Boston, MA: Kluwer.

    Google Scholar 

  • de Cooman, G. (1999). From possibilistic information to Kleene’s strong multi-valued logics. In D. Dubois, E. P. Klement, & H. Prade (Eds.), Fuzzy Sets, Logics and Reasoning About Knowledge (pp. 315–323). Boston, MA: Kluwer.

    Google Scholar 

  • de Tré, G. (2002). Extended possibilistic truth values. International Journal of Intelligent Systems, 17, 427–446.

    Article  MATH  Google Scholar 

  • de Tré, G., de Caluwe, R., Verstraete, J., & Hallez, A. (2002). Conjunctive aggregation of extended possibilistic truth values and flexible database querying. Lecture Notes in Artificial Intelligence, 2522, 344–355.

    Google Scholar 

  • de Tré, G., & de Caluwe, R. (2003). Modelling uncertainty in multimedia database systems: An extended possibilistic approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(1), 5–22.

    Article  MATH  MathSciNet  Google Scholar 

  • de Tré, G., & de Baets, B. (2003). Aggregating constraint satisfaction degrees expressed by possibilistic truth values. IEEE Transactions on Fuzzy Systems, 11(3), 361–368.

    Article  Google Scholar 

  • Dubois, D. & Prade, H. (1988). Possibility Theory. New York, NY: Plenum.

    MATH  Google Scholar 

  • Dubois, D., & Prade, H. (2001). Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificial Intelligence, 32(1–4), 35–66.

    Article  MathSciNet  Google Scholar 

  • Dyreson, C. E. (1997). A bibliography on uncertainty management in information systems. In A. Motro & P. Smets (Eds.), Uncertainty Management in Information Systems: From Needs to Solutions. (pp. 415–458). Boston, MA: Kluwer.

    Google Scholar 

  • Galindo, J., Medina, J. M., Pons, O., & Cubero, J. C. (1998). A server for fuzzy SQL queries. In T. Andreasen, H. Christiansen, & H. L. Larsen (Eds.), Flexible Querying and Answering Systems. (pp. 164–174). Dodrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • International organization for Standardization (ISO) (1992). Database language SQL. Document ISO/IEC 9075.

  • International Organization for Standardization (ISO) (1996). Information technology–database languages–SQL–technical corrigendum 2. Document ISO/IEC 9075:1992/Cor. 2.

  • Imieli\({\text{ $ \grave{n} $ }}\)ski, T. & Lipski, W. (1984). Incomplete information in relational databases. Journal of the ACM, 31(4), 761–791.

  • Keller, A. M., & Winslett, M. (1984). Approaches for updating databases with incomplete information and nulls. In Proc. of the 1st International Conference on Data Engineering (pp. 332–340). Los Angeles, CA, USA.

  • Keller, A. M. (1986). Set-theoretic problems of null completion in relational databases. Information Processing Letters, 22(5), 261–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data. New York, NY: Wiley.

    MATH  Google Scholar 

  • Ma, Z. (Ed.) (2005). Advances in Fuzzy Object-oriented Databases: Modeling and Applications. Hershey, USA: About Idea Group.

    Google Scholar 

  • MacColl, H. (1906). Symbolic Logic and its Applications. London, UK: Longmans, Green.

    Google Scholar 

  • Mathiowetz, N. A. (1998). Respondent expression of uncertainty: data source for imputation. Public Opinion Quarterly, 62, 47–56.

    Article  Google Scholar 

  • Motro, A. (1995). Management of uncertainty in database systems. In W. Kim (Ed.), Modern database systems: The Object Model, Interoperability, and Beyond. (pp. 457–476). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Pasi, G., & Yager, R. R. (1998). An approach to compute default attribute values in fuzzy object oriented data models. In Proc. of the FUZZ-IEEE, World Congress on Computational Intelligence (pp. 1326–1331). Anchorage, Alaska.

  • Pasi, G., & Yager, R. R. (1999). Calculating attribute values using inheritance structures in fuzzy object-oriented data models. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 29(4), 556–565.

    Article  Google Scholar 

  • Petry, F. E. (1996). Fuzzy Databases: Principles and Applications. Boston, MA: Kluwer.

    MATH  Google Scholar 

  • Prade, H. (1982). Possibility sets, fuzzy sets and their relation to Lukasiewicz logic. In Proc. of the 12th International Symposium on Multiple-valued Logic (pp. 223–227), Paris, France.

  • Prade, H., & Testemale, C. (1984). Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Information Sciences, 34, 115–143.

    Article  MATH  MathSciNet  Google Scholar 

  • Rescher, N. (1969). Many-valued Logic. New York, NY: McGraw-Hill.

    MATH  Google Scholar 

  • Riedel, H., & Scholl, M. H. (1997). A formalization of ODMG queries. In S. Spaccapietra & F. Maryanski (Eds.), Proc. of the 7th Working Conference on Database Semantics (DS-7) (pp. 63–90). Leysin, Switzerland.

  • Sagiv, Y. (1981). Can we use the universal instance assumption without using nulls? Proc. of the SIGMOD Conference (pp. 108–120). Boston, MA.

  • Ullman, J. D. (1980). Principles of Database Systems (1st ed). Rockville, Maryland: Computer Science Press.

    MATH  Google Scholar 

  • Umano, M., & Fukami, S. (1994). Fuzzy relational algebra for possibility-distribution-fuzzy relational model of fuzzy data. Journal of Intelligent Information Systems, 3, 7–27.

    Article  Google Scholar 

  • Vassiliou, Y. (1979). Null values in data base management: A denotational semantics approach. Proc. of the SIGMOD conference (pp. 162–169). Boston, MA.

  • Yazici, A. & George. R. (1999). Fuzzy Database Modeling. Heidelberg, Germany: Physica-Verlag.

    MATH  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1975). The concept of linguistic variable and its application to approximate reasoning parts I, II and III. Information Sciences, 8, 199–251, 8, 301–357, 9, 43–80.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU)—an outline. Information Sciences, 172, 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadrozny, S., & Kacprzyk, J. (1996). FQUERY for access: towards human consistent querying user interface. In Proc. of the 1996 ACM Symposium on Applied computing (SAC) (pp. 532–536). Philadelphia, USA.

  • Zaniolo, C. (1984). Database relations with null values. Journal of Computer and System Sciences, 28(1), 142–166.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy de Tré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Tré, G., de Caluwe, R. & Prade, H. Null values in fuzzy databases. J Intell Inf Syst 30, 93–114 (2008). https://doi.org/10.1007/s10844-006-0021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-006-0021-0

Keywords

Navigation