Skip to main content
Log in

Incremental controlled relaxation of failing flexible queries

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

In this paper, we discuss an approach for relaxing a failing query in the context of flexible (or fuzzy) querying. The approach relies on the notion of a parameterized proximity relation which is defined in a relative way. We show how such a proximity relation allows for transforming a gradual predicate into an enlarged one. The resulting predicate is semantically close to the original one and it is obtained by a simple fuzzy arithmetic operation. Such a transformation provides the basis for a flexible query relaxation which can be controlled in a non-empirical rigorous way without requiring any additional information from the user. We also show how the search for a non-failing relaxed query over the lattice of relaxed queries can be improved by exploiting the notion of Minimal Failing Sub-queries derived from the failing query.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. See the Appendix for a brief introduction on fuzzy sets theory.

  2. The following assumption holds: if x is close to y then neither is x negligible w.r.t. y, nor is y negligible w.r.t. x. Then, the interval V is the solution to the inequality μ Cl[M](x, y) ≤ 1–max(μ Ne[M](x, y), μ Ne[M](y, x)).

  3. If F is a fuzzy set on a universe U, a dilation operation allows for building a fuzzy set F  ∗  such that \(F \subseteq F^{\ast }\).

  4. Of course, we can use any other t-norm for interpreting this connector (see Dubois and Prade 2000).

References

  • Andreasen, T., & Pivert, O. (1994). On the weakening of fuzzy relational queries. In Proc. of the 8th int. symp. on methodologies for intelligent systems (pp. 144–151). Charlotte.

  • Bosc, P., & Pivert, O. (1992). Some approaches for relational databases flexible querying. Journal of Intelligent Information Systems, 1, 323–354. doi:10.1007/BF00962923.

    Article  Google Scholar 

  • Bosc, P., Hadjali, A., & Pivert, O. (2004). Fuzzy closeness relation as a basis for weakening fuzzy relational queries. In Proc. int. conf. on flexible query answering systems (FQAS’04), LNCS 3055 (pp. 41–53). Springer.

  • Bosc, P., Hadjali, A., & Pivert, O. (2005). Towards a tolerance-based technique for cooperative answering of fuzzy queries against regular databases. In Proc. int. conf. CoopIS, LNCS 3760 (pp. 256–273). Springer.

  • Bosc, P., Hadjali, A., & Pivert, O. (2006). Relaxation paradigm in a flexible querying context. In Proc. int. conf. on flexible query answering systems (FQAS’06), LNCS 4027 (pp. 39–50). Springer.

  • Bosc, P., Hadjali, A., & Pivert, O. (2007). Weakening of fuzzy relational queries: An absolute proximity relation-based approach. Mathware & Soft Computing Journal 14(1), 35–55.

    MATH  MathSciNet  Google Scholar 

  • Christiansen, H., Larsen, H. & Andreasen, T. (Eds.) (1997). Flexible query answering systems. Norwell: Kluwer Academic.

    MATH  Google Scholar 

  • Corella, F., Kaplan, S. J., Wiederhold, G., & Yesil, L. (1984). Cooperative responses to Boolean queries. In Proc. int. conference on data enginering (pp. 77–85).

  • Chu, W., CYang, H., Chiang, K., Minock, M., Chow, G., & Larson, C. (1996). Cobase: A scalable and extensible cooperative information system. Journal of Intelligent Information Systems 6(2–3), 223–259. doi:10.1007/BF00122129.

    Article  Google Scholar 

  • De Calmès, M., Dubois, D., Hullermeier, E., Prade, H., & Sedes, F. (2003). Flexibility and fuzzy case-based evaluation in querying: An illustration in an experimental setting. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 11(1), 43–66. doi:10.1142/S0218488503001941.

    Article  MATH  Google Scholar 

  • Dubois, D., & Prade, H. (2000). Fundamentals of fuzzy sets. In D. Dubois & H. Prade (Eds.). The handbooks of fuzzy sets series. (Vol. 3). Netherlands: Kluwer Academic.

    Google Scholar 

  • Gaasterland, T. (1997). Cooperative answering through controlled query relaxation. IEEE Expert 12, 48–59. doi:10.1109/64.621228.

    Article  Google Scholar 

  • Gaasterland, T., Godfrey, P., & Minker, J. (1992). Relaxation as a platform for cooperative answering. Journal of Intelligent Information Systems 1(3–4), 293–321. doi:10.1007/BF00962922.

    Article  Google Scholar 

  • Godfrey, P. (1997). Minimization in cooperative response to failing database queries. International Journal of Cooperative Information Systems 6(2), 95–149. doi:10.1142/S0218843097000070.

    Article  Google Scholar 

  • Godfrey, P. (1998). Relaxation in web search: A new paradigm for search by Boolean queries. Personal communication. Accessed at http://citeseer.ist.psu.edu/godfrey98relaxation.html .

  • Hadjali, A., Dubois, D., & Prade, H. (2003). Qualitative reasoning based on fuzzy relative orders of magnitude. IEEE Transactions on Fuzzy Systems 11(1), 9–23. doi:10.1109/TFUZZ.2002.806313.

    Article  Google Scholar 

  • Huh, S. Y., Moon, K. H., & Lee, H. (2000). A data abstraction approach for query relaxation. Information and Software Technology 42, 407–418. doi:10.1016/S0950-5849(99)00100-7.

    Article  Google Scholar 

  • Huh, S. Y., Moon, K. H., & Lee, H. (2002). Cooperative query processing via knowledge abstraction and query relaxation. Advanced Topics in Database Research 1, 211–228, Idea Group.

    Google Scholar 

  • Jannach, D. (2006). Finding preferred query relaxation in content-based recommenders. In Proc. int. IEEE conference intelligent systems (pp. 355–360).

  • Kaplan, S. J. (1982). Cooperative responses from a portable natural language query system. Artificial Intelligence 19, 165–187. doi:10.1016/0004-3702(82)90035-2.

    Article  Google Scholar 

  • Larsen, H., Kacpryk, J., Zadrozny, S., Andreasen, T., & Christiansen, H., (Eds.) (2001). Flexible query answering systems, recent advances. Physica Verlag.

  • Liu, S., & Chu, W. W. (2007). CoXML: A cooperative XML query answering system. In Proc. int. conference on web-age information management.

  • Mcsherry, D. (2005). Retrieval failure and recovery in recommender systems. Artificial Intelligence Review 24, 319–338. doi:10.1007/s10462-005-9000-z.

    Article  Google Scholar 

  • Motro, A. (1986). SEAVE: A mechanism for verifying user presuppositions in query systems. ACM Transactions on Office Information Systems 4(4), 312–330.

    Article  Google Scholar 

  • Motro, A. (1990). FLEX: A tolerant and cooperative user interface databases. IEEE Transactions on Knowledge and Data Engineering 2(2), 231–246. doi:10.1109/69.54722.

    Article  Google Scholar 

  • Muslea, I. (2004). Machine learning for online query relaxation. In Proc. int. conf. of knowledge and discovery and data mining, KDD’2004 (pp. 246–255). Washington, USA.

  • Muslea, I., & Lee, T. J. (2005). Online query relaxation via Bayesian causal structures discovery. In Proc. national conference of artificial intelligence (AAAI-05) (pp. 831–836).

  • Ras, Z. W., & Dardzinska, D. (2005). Failing queries in distributed autonomous information systems. In Proc. int. symp. on Methodologies for intelligent systems (ISMIS’05). LNAI 3488 (pp. 152–160). Springer.

  • Voglozin, W. A., Rashia, G., Ughetto, L., & Mouaddib, N. (2005). Querying the SaintEtiq summaries: Dealing with null answers. In Proc. IEEE inter. conf. on fuzzy systems (pp. 585–590). USA.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8, 338–353. doi:10.1016/S0019-9958(65)90241-X.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allel Hadjali.

Appendix

Appendix

Fuzzy sets theory was introduced by Zadeh (1965) for dealing with the representation of classes or sets whose boundaries are not quite defined. Then, there is a gradual rather crisp transition between the full membership and the full mismatch. Formally, a fuzzy set F on the referential U is characterized by a membership function

$$\mu _F :U\to \left[ {0,\;1} \right],$$

where μ F (u) represents the grade of membership of u in F. In particular, μ F (u)=1 reflects full membership of u in F, while μ F (u) = 0 expresses absolute non-membership in F. When 0 < μ F (u) < 1, one speaks of partial membership. Two crisp sets are of particular interest when defining a fuzzy set F: the core \(\mathcal{C}(F) = \{ u \in U/\mu _F (u) = 1\}\) (it gathers the prototypes of F) and the support \(\mathcal{S}(F) = \{ u \in U/\mu _F (u) > 0\}\) (it contains elements which belong to some extent to F). In practice, the membership function associated to F is often of trapezoidal form. Then, F is expressed by the quadruplet (A, B, a, b) where \(\mathcal{C}(F) = [A,\,\,B]\) and \(\mathcal{S}(F) = [A - a,\,\,B + b]\). For instance, if F represents the fuzzy set of Young persons then, F = (0, 25, 0, 15), see Fig. 3.

Let F and G be two fuzzy sets on the universe U, we say that \(F \subseteq G\) iff μ F (u) ≤ μ G (u), ∀ u ∈ U. The complement of F, denoted F c, is defined by \(\mu _{F^c } (u) = 1 - \mu _F (u)\). Furthermore, F ∩ G (resp. F ∪ G) is defined such that \(\mu _{F\cap G} \left( u \right)=\) \(\mbox{min}\left( {\mu _F \left( u \right)}\right.\!\!,\left.{\mu _G \left( u \right)} \right)\) (resp. \(\mu _{F\cup G} \left( u \right)=\mbox{max}\left( {\mu _F \left( u \right)\!,\;\mu _G \left( u \right)} \right))\). Fuzzy intervals (or fuzzy numbers) are fuzzy sets on the real line. Finally, let us recall that if U and V are two referential, a fuzzy relation R from U to V is a fuzzy set on UxV. See Dubois and Prade (2000) for more details about this theory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosc, P., Hadjali, A. & Pivert, O. Incremental controlled relaxation of failing flexible queries. J Intell Inf Syst 33, 261–283 (2009). https://doi.org/10.1007/s10844-008-0071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-008-0071-6

Keywords