Skip to main content
Log in

Using temporal constraints for temporal abstraction

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

The need to provide high level descriptions of the evolution of data is evident in fields like medicine. For being able to perform task such as diagnostic or monitoring, it is very important to facilitate a high level representation and management of temporal data. With this representation two main benefits are obtained: it becomes easier to compare data with generic knowledge, and the volume of data can be reduced. Several models have been proposed for time representation and management. Temporal constraints have been extensively used as a liable model in problems where temporal imprecision or missing data exist. The imprecision is usually present when data are manually collected, or when the data are based on subjective observations. The aim of this paper is to demonstrate how temporal constraints can be used as a formalism in which temporal abstraction of concepts can be performed. To this end, in the first place, we introduce the fuzzy temporal constraint network as the formalism for representing temporal information. Then, we present an algorithm for obtaining a state representation from a sequence of observations. We show the complexity and applicability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Where m and s represent minutes and seconds, respectively.

  2. Where m and s represent minutes and seconds, respectively.

  3. We have defined in Campos et al. (2005) a series of basic abstractions (qualitative, generalizations, etc) which can be expressed in this way.

  4. Given a temporal network \(\mathcal{N}=\langle\mathcal{T},\mathcal{L}\rangle\), the symbol ≺ will represent a binary relation in the set of temporal variables \(\mathcal{L}\), \(\prec\subseteq\mathcal{T}\times\mathcal{T}\) defined as \(T_{i}\prec T_{j}\leftrightarrow\mathcal{L}(T_{i},T_{j})\subseteq\mathcal{L}^{+}\).

  5. A network in which the ≺ relation is a total order is called an ordered network.

  6. As explained in Section 2, we use a discrete representation of time.

  7. The operation \(g_{p}\oplus\mathcal{L}^{+}\) is a fuzzyfication of the granularity. Since this is a whole number and is composed with the positive constraint \(\mathcal{L}^{+}\), we obtain a fuzzy constraint corresponding to L(g p , + ∞ ).

References

  • Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.

    Article  MATH  Google Scholar 

  • Anselma, L., Terenziani, P., Montani, S., & Bottrighi, A. (2006). Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artificial Intelligence in Medicine, 38, 171–195.

    Article  Google Scholar 

  • Barro, S., Marín, R., Mira, J., & Patón, A. R. (1994). A model and a language for the fuzzy representation and handling of time. Fuzzy Sets and Systems, 61, 153–175.

    Article  MathSciNet  Google Scholar 

  • Bellazi, R., Larizza, C., & Riva, A. (1998). Temporal abstraction for interpreting diabetic patients monitoring data. Intelligent Data Analysis, 2(1–2), 97–122.

    Article  Google Scholar 

  • Brusoni, V., Console, L., Terenziani, P., & Dupré, D. T. (1998). A spectrum of definitions for temporal model-based diagnosis. Artificial Intelligence, 102(1), 39–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Combi, C., & Chittaro, L. (1999). Abstraction on clinical data sequences: And object oriented data model and a query language based on the event calculus. Artificial Intelligence in Medicine, 17(3), 271–301.

    Article  Google Scholar 

  • Campos, M., Cárceles, A., Palma, J., & Marín, R. (2002). A general purporse fuzzy temporal information management engine. In EurAsia-ICT 2002. Advances in information and communication technology (pp. 93–97).

  • Campos, M., Juáres, J. M., Palma, J., & Marín, R. (2007). Temporal data mining with temporal constraints. In Artificial intelligence in medicine. 11th conference on artificial intelligence in medicine. LNCS (Vol. 4594, pp. 67–76).

  • Campos, M., Martínez, A., Palma, J., & Marín, R. (2005). Modelo genérico de abstracción temporal de datos. In Proceedings of the XI conferencia de la asociación Espanola para la inteligencia artificial. CAEPIA05 (Vol. 2, pp. 51–60).

  • DeCoste, D. (1991). Dynamic across-time measurement interpretation. Artificial Intelligence, 51(1), 273–341.

    Article  Google Scholar 

  • Dojat, M., Ramaux, N., & Fontaine, D. (1998). Scenario recognition for temporal reasoning in medical domains. Artificial Intelligence in Medicine, 14(1–2), 139–155.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1988). Possibilistic Theory: An approach to computerized processing of uncertainty. New York: Plenum.

    Google Scholar 

  • Felix, P., Barro, S., & Marín, R. (2003). Fuzzy constraint networks for signal pattern recognition. Artificial Intelligence, 148(1–2), 103–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Flach, P. A., & Kakas, A. C. (2000). Abduction and induction reasoning: Background and issues. Applied logic series (chapter 1, pp. 1–27). Dordrecht: Kluwer.

    Google Scholar 

  • Gamper, J., & Nejdl, W. (1997). Abstract temporal diagnosis in medical domains. Artificial Intelligence in Medicine, 10(3), 1116–1122.

    Article  Google Scholar 

  • Haimowitz, I. J., & Kohane, I. S. (1996). Managing temporal worlds for medical trend diagnosis. Artificial Intelligence in Medicine, 8, 299–321.

    Article  Google Scholar 

  • Hau, D. T., & Coiera, E. W. (1997). Learning qualitative models of dynamic systems. Machine Learning, 26(2–3), 177–211.

    Article  MATH  Google Scholar 

  • Ho, T. B., Nguyen, D. D., Kawasaki, S., & Nguyen, T. D. (2002). Extracting knowledge from hepatitis data with temporal abstraction. In H. Phuong, H. T. Nguyen, N. C. Ho, & P. Santiprabhob (Eds.), Proceedings of the joint third international conference on intelligent technologies and third Vietnam–Japan symposium on fuzzy systems and applications (InTech/VJFuzzy2002) (pp. 362–370).

  • Ho, T. B., Nguyen, T. D., Kawasaki, S., & Le, S. Q. (2004). Combining temporal abstraction and data mining methods in medical data mining. Intelligent Knowledge-Based Systems, 3, 198–222.

    Google Scholar 

  • Josephson, J., & Josephson, S. (1994). Abductive inference: Computation, philosophy, technology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kautz, H., & Ladkin, P. (1991). Integrating metric and qualitative temporal reasoning. In Proceedings of the 9th national conference on artificial intelligence, AAAI-91 (pp. 241–246).

  • Khatib, L., Morris, P. H., Morris, R. A., & Rossi, F. (2001). Temporal constraint reasoning with preferences. In Seventeenth international joint conference on artificial intelligence, IJCAI 2001 (pp. 322–327).

  • Kryszkiewicz, M., Rybinski, H., & Gajek, M. (2004). Dataless transitions between concise representations of frequent patterns. Journal of Intelligent Information System, 22(1), 41–70.

    Article  Google Scholar 

  • Lavrač, N., Keravnou, E. A, & Zupan, B. (2000). Intelligent data analysis in medicine. Encyclopedia of computer science and technology (Vol. 42, pp. 113–157). New York: Marcel Dekker.

    Google Scholar 

  • Marín, R., Barro, S., Palacios, F., Ruiz, R., & Martín, F. (1994a). An approach to fuzzy temporal reasoning in medicine. Mathware & Soft Computing, 1(3), 265–276.

    Google Scholar 

  • Marín, R., Cárdenas, M. A., Balsa, M., & Sánchez, J. L. (1996). Obtaining solutions in fuzzy constraint networks. International Journal of Approximate Reasoning, 16(3–4), 261–288.

    Google Scholar 

  • Marín, R., Mira, J., Patón, R., & Barro, S. (1994b). A model and a language for the fuzzy representation and handling of time. Fuzzy Sets and Systems, 61, 153–165.

    Article  MathSciNet  Google Scholar 

  • Meiri, I. (1996). Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelligence, 87(1–2), 343–385.

    Article  MathSciNet  Google Scholar 

  • Miksch, S., Horn, W., Popow, C., & Paky, F. (1996). Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants. Artificial Intelligence in Medicine, 8(6), 543–576.

    Article  Google Scholar 

  • Miksch, S., Seyfang, A., Horn, W., & Popow, C.(1999). Abstracting steady qualitative descriptions over time from noisy, high-frequency data. In W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, & J. Wyatt (Eds.), Artificial intelligence in medicine. Joint European conference on artificial intelligence in medicine and medical decision making, AIMDM’99. Lecture notes in computer science (Vol. 1620, pp. 281–290). New York: Springer.

    Google Scholar 

  • Nguyen, J. H., Shahar, Y., Tu, S. W., Das, A. K., & Musen, M. A. (1999). Integration of temporal reasoning and temporal-data maintenance into a reusable database mediator to answer abstract, time-oriented queries: The tzolkin system. Journal of Intelligent Information System, 13(1–2), 121–145.

    Article  Google Scholar 

  • Palma, J., Juárez, J. M., Campos, M., & Marín, R. (2006). Fuzzy theory approach for temporal model-based diagnosis: An application to medical domains. Artificial Intelligence in Medicine, 38(2), 197–218.

    Article  Google Scholar 

  • Perkins, W., & Austin, A. (1990). Adding temporal reasoning to expert-system building environments. IEEE Expert, 5(1), 23–30.

    Article  Google Scholar 

  • Salatian, A. (2003). Interpreting historical ICU data using associational and temporal reasoning. In 15th IEEE international conference on tools with artificial intelligence (ICTAI 2003) (pp. 442–451). Sacramento: USA.

  • Seyfang, A., & Miksch, S. (2004). Advanced temporal data abstraction for guideline execution. In K. Kaiser, S. Miksch, & S. Tu (Eds.), Symposium on computerized guidelines and protocols: Computer-based support for clinical guidelines and protocols (CGP 2004) (pp. 88–102). Prague: IOS.

    Google Scholar 

  • Seyfang, A., Miksch, S., Horn, W., Urschitz, M. S., Popow, C., & Poets, C. F. (2001). Using time-oriented data abstraction methods to optimize oxygen supply for neonates. In Proceedings of European conference on artificial intelligence in medicine (AIME 2001) (pp. 217–226). Cascais: Portugal.

    Google Scholar 

  • Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1–2), 79–133.

    Article  MATH  Google Scholar 

  • Shahar, Y. (1998). Dynamic temporal interpretation contexts for temporal abstraction. Annals of Mathematics and Artificial Intelligence, 22(1–2), 159–192.

    Article  MATH  Google Scholar 

  • Shahar, Y., & Musen, M. (1993). RÉSUMÉ: A temporal-abstraction system for patient monitoring. Computers and Biomedical Research, 26, 255–273.

    Article  Google Scholar 

  • Shahar, Y., & Musen, M. A. (1996). Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine, 8(3), 267–298.

    Article  Google Scholar 

  • Shoham, Y., & McDermott, D. (1988). Problems in formal temporal reasoning. Artificial Intelligence, 36, 49–61.

    Article  MATH  Google Scholar 

  • Russ, T. A. (1995). Use of data abstraction methods to simplify monitoring. Artificial Intelligence in Medicine, 7(6), 497–514.

    Article  Google Scholar 

  • van Beek, P. (1991). Temporal query processing with indefinite information. Artificial Intelligence in Medicine, 3(6), 325–339.

    Article  Google Scholar 

  • Vila, L., & Godo, L. (1994). On fuzzy temporal constraint networks. Mathware and Soft Computing, 1(3), 315–334.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Campos.

Additional information

This work was supported by the Spanish Ministry of Education and Science(MEC) and the European Regional Development Fund of the European Commission(FEDER) under grants TIN2006-15460-C04-01 and PET2006-0406 and the Regional Agency for Science and Technology (Seneca Foundation) under grant 08853/PI/08.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, M., Juárez, J.M., Palma, J. et al. Using temporal constraints for temporal abstraction. J Intell Inf Syst 34, 57–92 (2010). https://doi.org/10.1007/s10844-009-0079-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-009-0079-6

Keywords

Navigation