Skip to main content
Log in

Subspace tree: high dimensional multimedia indexing with logarithmic temporal complexity

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

We will show that the hierarchical linear subspace method is a tree that divides the distances between the subspaces. By doing so, the data is divided into disjoint entities. The asymptotic upper bound estimation of the maximum applicable number of subspaces is logarithmically constrained by the number of represented elements and their dimension. The search in such a tree starts at the subspace with the lowest dimension. In this subspace, the set of all possible similar images is determined. In the next subspace, additional metric information corresponding to a higher dimension is used to reduce this set. The distances between the subspaces correspond to the values represented by the difference between the mean distance of all the points in one space and a corresponding mean distance of the objects in a subspace. The theoretical estimation of temporal complexity of the algorithmic is logarithmic. The costs are equivalent to the search costs in an tree plus the additional costs of the dimension of the data space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andoni, A., Dater, M., Indyk, P., Immorlica, N., & Mirrokni, V. (2006). Locality-sensitive hashing using stable distributions. In T. Darrell, P. Indyk, & G. Shakhnarovich (Eds.), Nearest neighbor methods in learning and vision: Theory and practice (Chapter 4). Cambridge: MIT.

    Google Scholar 

  • Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modeling. In R. Baeza-Yates, & B. Ribeiro-Neto (Eds.), Modern information retrieval (Chapter 2, pp. 19–71). Reading: Addison-Wesley.

    Google Scholar 

  • Blei, D. M., & Jordan, M. I. (2003). Modeling annotated data. In Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval (pp. 127–134).

  • Böhm, C., Berchtold, S., & Kei, D. A. K. (2001). Searching in high-dimensional spaces—index structures for improving the performance of multimedia databases. ACM Computing Surveys, 33(3), 322–373.

    Article  Google Scholar 

  • Burt, P. J., & Adelson, E. H. (1983). The laplacian pyramidas a compact image code. IEEE Transactions on Communications, COM-31(4), 532–540.

    Article  Google Scholar 

  • Chen, Y., & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5, 913–939.

    Google Scholar 

  • Ciaccia, P., & Patella, M. P. Z. (1997). M-tree: An efficient access method for similarity search in metric spaces. In VLDB (pp. 426–435).

  • Ciaccia, P., & Patella, M. (2002). Searching in metric spaces with user-defined and approximate distances. ACM Transactions on Database Systems, 27(4), 398–437.

    Article  Google Scholar 

  • Datta, R., Joshi, D., & Wang, J. (2008). Image retrieval: Ideas, influences, and trands of the new age. ACM Computing Surveys, 40(2), 1–60.

    Article  Google Scholar 

  • Dunckley, L. (2003). Multimedia databases, an object-rational approach. Reading: Addison Wesley.

    Google Scholar 

  • Faloutsos, C. (1999). Modern information retrieval. In R. Baeza-Yates, & B. Ribeiro-Neto (Eds.), Modern information retrieval (Chapter 12, pp. 345–365). Reading: Addison-Wesley.

    Google Scholar 

  • Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., et al. (1994). Efficient and effective querying by image content. Journal of Intelligent Information Systems, 3(3/4), 231–262.

    Article  Google Scholar 

  • Flickner, M., Sawhney, H., Niblck, W., Ashley, J., Huang, Q., Dom, B., et al. (1995). Query by image and video content the QBIC system. IEEE Computer, 28(9), 23–32.

    Google Scholar 

  • Fonseca, M. J., & Jorge, J. A. (2003). Indexing high-dimensional data for content-based retrieval in large databases. In Proceedings of the 8th international conference on database systems for advanced applications (pp. 267–274).

  • Gonzales, R. C., & Woods, E. W. (2001). Digital image processing (2nd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Hove, L.-J. (2004). Extending image retrieval systems with a thesaurus for shapes. Master’s thesis, Institute for Information and Media Sciences—University of Bergen.

  • Jeon, J., Lavrenko, V., & Manmatha, R. (2003). Automatic image annotation and retrieval using cross-media relevance models. In Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval (pp. 119–126).

  • Kim, H.-G., Moreau, N., & Sikora, T. (2005). MPEG-7 audio and beyond: Audio content indexing and retrieval. New York: Wiley.

    Book  Google Scholar 

  • Li, J., & Wang, J. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Learning, 25(9), 1075–1088.

    Article  Google Scholar 

  • Li, J., & Wang, J. (2004). Studying digital imagery of ancient paintings by mixtures of stochastic models. IEEE Transactions on Pattern Analysis and Machine Learning, 12(2), 1–15.

    Google Scholar 

  • Lv, Q., Josephson, W., Wang, Z., Charikar, M., & Li, K. (2007). Multi-probe lsh: Efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd international conference on very large data bases (pp. 950–961).

  • Manjunath, B., Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7: Multimedia content description interface. New York: Wiley.

    Google Scholar 

  • Mirmehdi, M., & Periasamy, R. (2001). Cbir with perceptual region features. In BMVC.

  • Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E. H., Petkovic, D., et al. (1993). The qbic project: Querying images by content, using color, texture, and shape. In Storage and retrieval for image and video databases (SPIE) (pp. 173–187).

  • Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocabulary tree. In IEEE conference on computer vision and pattern recognition (CVPR) (Vol. 2, pp. 2161–2168).

  • Olafsson, A., Jonsson, B., & Amsaleg, L. (2008). Dynamic behavior of balanced nv-trees. In International workshop on content-based multimedia indexing conference proceedings, IEEE (pp. 174–183).

  • Quack, T., Mönich, U., Thiele, L., & Manjunath, B. S. (2004). Cortina: A system for large-scale, content-based web image retrieval. In Proceedings of the 12th annual ACM international conference on multimedia (pp. 508–511).

  • Resnikoff, H. L. (1989). The illusion of reality. New York: Springer.

    MATH  Google Scholar 

  • Sakurai, Y., Yoshikawa, M., Uemura, S., & Kojima, H. (2002). Spatial indexing of high-dimensional data based on relative approximation. VLDB Journal, 11(2), 93–108.

    Article  Google Scholar 

  • Smeulders, A., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1349–1380.

    Article  Google Scholar 

  • Wang, J., Li, J., & Wiederhold, G. (2001). Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963.

    Article  Google Scholar 

  • Wichert, A. (2008). Content-based image retrieval by hierarchical linear subspace method. Journal of Intelligent Information Systems, 31(1), 85–107.

    Article  MathSciNet  Google Scholar 

  • Zaniolo, C., Ceri, S., Snodgrass, R. T., Zicari, R., & Faloutsos, C. (1997). Advanced database systems. San Francisco: Morgan Kaufmann.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank for the permission to use the data-set for experimental tests purposes to TM Deserno, Dept. of Medical Informatics, RWTH Aachen, Germany. The author would like to gratefully acknowledge two anonymous reviewers for their valuable suggestions. The author would also like to thank Patricia Lima, for the help during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wichert, A., Teixeira, P., Santos, P. et al. Subspace tree: high dimensional multimedia indexing with logarithmic temporal complexity. J Intell Inf Syst 35, 495–516 (2010). https://doi.org/10.1007/s10844-009-0104-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-009-0104-9

Keywords

Navigation