Skip to main content
Log in

Visually exploring movement data via similarity-based analysis

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Data analysis and knowledge discovery over moving object databases discovers behavioral patterns of moving objects that can be exploited in applications like traffic management and location-based services. Similarity search over trajectories is imperative for supporting such tasks. Related works in the field, mainly inspired from the time-series domain, employ generic similarity metrics that ignore the peculiarity and complexity of the trajectory data type. Aiming at providing a powerful toolkit for analysts, in this paper we propose a framework that provides several trajectory similarity measures, based on primitive (space and time) as well as on derived parameters of trajectories (speed, acceleration, and direction), which quantify the distance between two trajectories and can be exploited for trajectory data mining, including clustering and classification. We evaluate the proposed similarity measures through an extensive experimental study over synthetic (for measuring efficiency) and real (for assessing effectiveness) trajectory datasets. In particular, the latter could serve as an iterative, combinational knowledge discovery methodology enhanced with visual analytics that provides analysts with a powerful tool for “hands-on” analysis for trajectory data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence databases. In Proceedings of fourth internationall conference foundations of data organization and algorithms.

  • Andrienko, G., & Andrienko, N. (2010). A general framework for using aggregation in visual exploration of movement data. The Cartographic Journal, 47(1), 22–40.

    Google Scholar 

  • Andrienko, G., Andrienko, N., & Wrobel, S. (2007). Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations, 9(2), 38–46.

    Article  Google Scholar 

  • Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander J. (1999). OPTICS: Ordering points to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD international conference on management of data.

  • Berndt, J., & Clifford, J. (1996). Finding patterns in time series: A dynamic programming approach. In Advances in knowledge discovery and data mining. Menlo Park: AAAI/MIT Press.

    Google Scholar 

  • Bollobas, B., Das, G., Gunopulos, D., & Mannila, H. (2001). Time-series similarity problems and well-separated geometric sets. Nordic Journal of Computing, 8, 409–423.

    MathSciNet  MATH  Google Scholar 

  • Brinkhoff, T. (2002). A Framework for generating network-based moving objects. Geoinformatica, 6(2), 153–180.

    Article  MATH  Google Scholar 

  • Brinkhoff, T. (2011). Network-based generator of moving objects. IAPG, Jade University Oldenburg, Germany. http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/. Accessed 1 Feb 2011.

  • Cai, Y., & Ng, R. (2004). Indexing spatio-temporal trajectories with Chebyshev polynomials. In Proceedings of the ACM SIGMOD international conference on management of data.

  • Chan, K. P., & Fu, A. W.-C. (1999). Efficient time series matching by Wavelets. In Proceedings of international conference on data engineering.

  • Chan, T. M. (1994). A simple trapezoid sweep algorithm for reporting red/blue segment intersections. In Proceedings of Canadian conference on computational geometry.

  • Chazelle, B., & Edelsbrunner, H. (2002). An optimal algorithm for intersecting line segments in the plane. Journal of the ACM, 39(1), 1–54.

    Article  MathSciNet  Google Scholar 

  • Chen, L., & Ng, R. (2004). On the marriage of edit distance and Lp norms. International Journal on Very Large Data Bases, 11, 28–46.

    Google Scholar 

  • Chen, L., Tamer Özsu, M., & Oria, V. (2005). Robust and fast similarity search for moving object trajectories. In Proceedings of the ACM SIGMOD international conference on management of data.

  • CLUTO (2011). Karypis Lab, University of Minnesota, USA. http://glaros.dtc.umn.edu/gkhome/views/cluto/. Accessed 1 Feb 2011.

  • Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. (2008). Querying and mining of time series data: Experimental comparison of representations and distance measures. In International conference on very large data bases.

  • Douglas, D., & Peucker, T. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10(2), 112–122.

    Google Scholar 

  • Frentzos, E., Gratsias, K., & Theodoridis, Y. (2007). Indexed-based most similar trajectory search. In Proceedings of international conference on data engineering.

  • Fu, A. W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A., Wong, R. C.-W. (2008). Scaling and time warping in time series querying. The VLDB Journal, 17, 899–921.

    Article  Google Scholar 

  • Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007). Trajectory pattern mining. In Proceedings of conference of knowledge discovery and data mining.

  • Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy, geographic knowledge discovery. New York: Springer.

    Book  Google Scholar 

  • Goh, K. S., Li, B., & Chang, T. (Eds.) (2002). Dyndex: A dynamic and non-metric space indexer. Proceedings of International Conference of SIGMM.

  • Goldin, Q., & Kanellakis, C. (1995). On similarity queries for time-series data: Constraint specification and implementation. Lecture Notes in Computer Science, 976, 137–153.

    Article  MathSciNet  Google Scholar 

  • Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. A. (1993). Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.

    Article  Google Scholar 

  • Keim, D. A. (2005). Scaling visual analytics to very large data sets. Presentation at visual analytics workshop. Available from http://infovis.uni-konstanz.de/events/VisAnalyticsWs05/index.php. Accessed 1 Feb 2011.

  • Keogh, E., & Kasetty, S. (2002). On the need for time series data mining benchmarks: A survey and empirical demonstration. In Proceedings of conference of knowledge discovery and data mining.

  • Korn, F., Jagadish, H., & Faloutsos, C. (1997). Efficiently supporting ad hoc queries in large datasets of time sequences. In Proceedings of the ACM SIGMOD international conference on management of data.

  • Kwan, M.-P., & Lee, J. (2004). Geovisualization of human activity patterns using 3-D GIS: A time-geographic approach. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science. New York: Oxford University Press.

    Google Scholar 

  • Laube, P., Imfeld, S., & Weibel, R. (2005). Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 19(6), 639–668.

    Article  Google Scholar 

  • Lee, J.-G., Han, J., & Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework. In Proceedings of the ACM SIGMOD international conference on management of data.

  • Lee, S.-L., Chun, S.-J., Kim, D.-H., Lee, J.-H., & Chung, C.-W. (2000). Similarity search for multidimensional data sequences. In Proceedings of international conference on data engineering.

  • Lin, B., & Su, J. (2005). Shapes based trajectory queries for moving objects. In Proceedings of the ACM annual international workshop on geographic information.

  • Little, J. L., & Gu, Z. (2001). Video retrieval by spatial and temporal structure of trajectories. Proceedings of SPIE, 4315, 545–552.

    Article  Google Scholar 

  • Marketos, G., Frentzos, E., Ntoutsi, I., Pelekis, N., Raffaeta, A., & Theodoridis, Y. (2008). Building real-world trajectory warehouses. In Proceedings of the seventh ACM international workshop on data engineering for wireless and mobile access.

  • Meratnia, N., & de By, R. A. (2004). Spatiotemporal compression techniques for moving point objects. In Proceedings of the international conference on extending data base technology.

  • Nanni, M., & Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal of Intelligent Information Systems, 27(3), 267–289.

    Article  Google Scholar 

  • Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2008). HERMES: Aggregative LBS via a trajectory DB engine. In Proceedings of the ACM SIGMOD international conference on management of data.

  • Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2011). HERMES: A trajectory DB engine for mobility-centric applications. International Journal of Knowledge-based Organizations, in press.

  • Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E., & Theodoridis, Y. (2009). Clustering trajectories of moving objects in an uncertain world. In Proceedings of international conference on data mining.

  • Pelekis, N., Kopanakis, I., Ntoutsi, I., Marketos, G., Andrienko, G., & Theodoridis, Y. (2007). Similarity search in trajectory databases. In Proceedings of the international symposium on temporal representation and reasoning.

  • Pelekis, N., & Theodoridis, Y. (2006). Boosting location-based services with a moving object database engine. In Proceedings of the international workshop on data engineering for wireless and mobile access.

  • Pelekis, N., Theodoridis, Y., Vosinakis, S., & Panayiotopoulos, T. (2006). Hermes—A framework for location-based data management. In Proceedings of international conference on extending database technology.

  • R-tree Portal (2011). InfoLab, University of Piraeus, Greece. http://www.rtreeportal.org. Accessed 1 Feb 2011.

  • Rafiei, D., & Mendelzon, A. O. (2002). Efficient retrieval of similar shapes. The VLDB Journal, 11(1), 17–27.

    Article  Google Scholar 

  • Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., & Andrienko, G. (2008). Visually–driven analysis of movement data by progressive clustering. Information Visualization, 7(3/4), 225–239.

    Article  Google Scholar 

  • Sakurai, Y., Yoshikawa, M., & Faloutsos, C. (2005). FTW: Fast similarity search under the time warping distance. In Proceedings of the twenty-fourth acm sigmod-sigact-sigart symposium on principles of database systems.

  • Thomas, J. J., & Cook, K. A. (Eds.) (2005). Illuminating the path. The research and development agenda for visual analytics. Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Tiakas, E., Papadopoulos, A. N., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., & Djordjevic-Kajan, S. (2009). Searching for similar trajectories in spatial networks. Journal of Systems and Software, 82(5), 772–788.

    Article  Google Scholar 

  • Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., & Vaccaro, D. (2007). Dynamics-aware similarity of moving objects trajectories. In Proceedings of ACM international conference on geographic information systems.

  • Vlachos, M., Gunopulos, D., & Das, G. (2002a). Rotation invariant distance measures for trajectories. In Proceedings of conference of knowledge discovery and data mining.

  • Vlachos, M., Kollios, G., & Gunopulos, D. (2002b). Discovering similar multidimensional trajectories. In Proceedings of international conference on data engineering.

  • Yanagisawa, Y., Akahani, J., & Satoh, T. (2003). Shape-based similarity query for trajectory of mobile objects. In Proceedings of the international conference on mobile data management.

  • Yi, B.-K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences under time warping. In Proceedings of international conference on data engineering.

  • Yu, H. (2006). Spatial-temporal GIS design for exploring interactions of human activities. Cartography and Geographic Information Science, 33(1), 3–19.

    Article  Google Scholar 

Download references

Acknowledgements

Research partially supported by the FP7 ICT/FET Project MODAP (Mobility, Data Mining, and Privacy) and the ESF/COST Action IC0903 MOVE (Knowledge Discovery from Moving Objects), both funded by the European Union. More information about these activities is available at www.modap.org and www.move-cost.info, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Pelekis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelekis, N., Andrienko, G., Andrienko, N. et al. Visually exploring movement data via similarity-based analysis. J Intell Inf Syst 38, 343–391 (2012). https://doi.org/10.1007/s10844-011-0159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-011-0159-2

Keywords

Navigation