Skip to main content
Log in

Optimal assembly plan generation: a simplifying approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The main difficulty in the overall process of optimal assembly plan generation is the great number of different ways to assemble a product (typically thousands of solutions). This problem confines the application of most existing automated planning methods to products composed of only a limited number of components. The presented method of assembly plan generation belongs to the approach called “disassembly” and is founded on a new representation of the assembly process, with introduction of a new concept, the equivalence of binary trees. This representation allows to generate the minimal list of all non-redundant (really different) assembly plans. Plan generation is directed by assembly operation constraints and plan-level performance criteria. The method was tested for various assembly applications and compared to other generation approaches. Results show a great reduction in the combinatorial explosion of the number of plans. Therefore, this simplifying approach of assembly sequence modeling allows to handle more complex products with a large number of parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamou M., Zerhouni S.N. and Bourjault A. (1998). Hierarchical modeling and control of flexible assembly systems using object-oriented Petri nets. International Journal of Computer Integrated Manufacturing 11(1): 18–33

    Article  Google Scholar 

  • Baldwin D.F., Abell T.E., Lui M.C. M., DeFazio T.L. and Whitney D.E. (1991). An integrated computer aid for generating and evaluating assembly sequences for mechanical products. IEEE Transactions On Robotics & Automation 7(1): 78–94

    Article  Google Scholar 

  • Baysal, M. M., Roy, U., Sudarsan, R., Sriram, R. D., & Lyons, K. (2005). Product information exchange using open assembly model: Issues related to representation of geometric information. In 2005 ASME IMECE 2005, Orlando, FL, November 5–11.

  • Bonneville, F., Perrard, C., & Henrioud, J. M. (1995). A genetic algorithm to generate and evaluate assembly plans. In ETFA’95, Paris, October, 1995, Vol. 2, pp. 231–239.

  • Boud, A. C. (1999). Virtual reality and augmented reality as a training tool for assembly tasks. In 1999 International Conference on Information Visualisation, July 14–16, p. 32.

  • Bourjault, A. (1984). Contribution à une approcheméthodologique de l’assemblage automatisé: Elaboration automatique des séquences opératoires. Thése d’Etat, Université de Franche-Comté 325 pp.

  • Bourjault, A., & Henrioud, J. M. (1987). Elaboration automatique des plans d’assemblage à l’aide de réseaux de Pétri. APII, 1987, Vol. 21, pp. 323–342.

  • Campagne, J. P., & Favrel, J. (1984). Elaboration automatique des plans d’assemblage: proposition d’une méthodologie d’approche, Colloque Int. Productique et Robotique, Bordeaux, 1984, Paru dans l’Onde Electrique, 1984, Mars - Avril, pp. 142–146.

  • Chakrabarty, S., Wolter, J. (1987). A structure-oriented approach to assembly sequence planning. IEEE Transaction on Robotics & Automation, 13 (1), 14–29.

    Article  Google Scholar 

  • Cittolin, A. (1997). Selection of assembly sequences using universal filtering methods. In ETFA’97, International Conference Emerging Technology Factory Automation, Los Angeles, September 1997, pp. 195–200.

  • De Fazio T.L. and Whitney D.E. (1987). Simplified generation of all mechanical assembly sequences. IEEE Transactions of Robotics & Automation RA- 3(6): 640–658

    Google Scholar 

  • De Lit, P., et al. (1999). A new philosophy for the design of a product and its assembly line. In Proceedings of the 1999 IEEE Int. Symposium on Assembly and Task Planning, Porto, Portugal, July 1999.

  • Du J., Jiao Y.Y. and Jiao J. (2005). Integrated BOM and routing generator for variety synchronization in assembly-to-order production. Internatioal Journal of Manufacturing Technology Management 16(2): 233–243. Emerald group Publishing ISSN: 1741–038X

    Article  Google Scholar 

  • Fanti M.P., Maione G. and Turchiano B. (2002). Design of supervisors to avoid deadlock in flexible assembly systems. International Journal of Flexible Manufacturing Systems 14(2): 153–171, Springer Science, ISSN: 0920–6299

    Article  Google Scholar 

  • Henrioud J.-M. and Bourjault A. (1988). LEGA: A computer-aided generator of assembly plans. In: Homemde Mello, L. and Lee, S. (eds) Computer-aided mechanical assembly planning, Chapter 8., pp 191–215. Orwell, USA, Kluwer Academic Publishing

    Google Scholar 

  • Homem de Mello L.S. and Sanderson A.C. (1990). And/or graph representation of assembly plans. IEEE Transactions on Robotics & Automation 6(2): 188–199

    Article  Google Scholar 

  • Homem de Mello L.S. and Sanderson A.C. (1991). Representation of mechanical assembly sequences. IEEE Transactions on Robotics & Automation 7(2): 211–227

    Article  Google Scholar 

  • Homem de Mello L.S. and Sanderson A.C. (1991). A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Transactions on Robotics & Automation 7(2): 228–240

    Article  Google Scholar 

  • Huang, Y. F., & Lee, C. S. G. (1991). A framework of knowledge-based assembly planning. In IEEE International Conference Robotics & Automation, Sacramento, CA, 1991, April, pp. 599–604.

  • Ikonomov Pavel G., Mikova E.D. and Dwivedi S.N. (2001). Virtual reality process simulation system. International Journal of Advanced Manufacturing System 4(2): 19–31

    Google Scholar 

  • Jones, R. E., Wilson, R. H. (1996). A survey of constraints in automated assembly planning. IEEE International Conference on robotics & automation, Minneapolis, Minnesota, April, pp. 1525–1532.

  • Jones R.E., Wilson R.H. and Calton T.L. (1998). On constraints in assembly planning. IEEE Transactions on Robotics & Automation 14(6): 849

    Article  Google Scholar 

  • Kusiak, A. (1992). Concurrent engineering–automation, tools and techniques. Wiley.

  • Laperrière L. and ElMaraghy H.A. (1992). Planning of products assembly and disassembly. CIRP Annals 41(1): 5–10

    Article  Google Scholar 

  • Lebkowski, P. (1997). A two-level procedure for generating assembly sequences using a generic algorithm. In IEPM’97 International Conference Industrial Engineering Production and Management Lyon, October, 1997, Vol. 1, pp. 129–138.

  • Martinez, M., Pham, V. H., & Favrel J. (1997). Dynamic generation of disassembly sequences. In ETFA’97, International Conference Emerging Technology on Factory Automation, Los Angeles, September 1997, pp. 177–182.

  • Martinez, M., Campagne, J. P., et al. (1995). Dynamic assembly sequences–A multi-agent control system. In ETFA’95, International Conference Emerging Technology on Factory Automation, Paris, October, Vol. 2, pp. 250–258.

  • Martinez M., Favrel J. and Ghodous P. (2000). Product family manufacturing plan generation and classification. CERA Journal, Concurrent Engineering Research and Applications 8(1/2): 12–23

    Google Scholar 

  • Mascle C. (2002). Feature-based assembly model for integration in computer-aided assembly. Robotics and Computer-Integrated Manufacturing 18(5–6): 373–378

    Article  Google Scholar 

  • Mascle, C., & Figour, J. (1990). Methodological approach of sequences determination using the disassembly method. In Rensselear’s Second Internatioal Conference on CIM, Troy, NY, May 1990, pp. 483–490.

  • Nof S.Y. and Chen J. (2003). Assembly and disassembly: An overview and framework for cooperation requirement planning with conflict resolution. Journal of Intelligent and Robotic Systems 37(3): 307–320, Springer Netherlands

    Article  Google Scholar 

  • Nof S.Y. and Rajan V.N. (1993). Automatic generation of assembly constraints and cooperation task planning. Annals of CIRP 42(1): 13–16

    Article  Google Scholar 

  • Nof, S. Y., Wilhelm, W. E., & Warnecke, H.-J. (1997). Industrial assembly. Chapman & Hall.

  • Pang Y., Nee Andrew Y.C., Ong S.K., Yuan M. and Youcef-Toumi K. (2006). Assembly feature design in an augmented reality environment. Journal of Assembly Automation 26(1): 34–43, ISSN: 0144–51542006

    Article  Google Scholar 

  • Ping J.i., Choi Albert C.K. and Tu L. (2002). VDAS: a virtual design and assembly system in a virtual reality environment. Assembly Automation 22(4): 337–342, ISSN: 0144–5154

    Article  Google Scholar 

  • Pingjun X., Yingxue Y., Jiangsheng L. and Jianguang L. (2006). Optimising assembly planning based on virtual reality and bionic algorithm. International Journal of Manufacturing Technology and Management 9(3/4): 265–293

    Article  Google Scholar 

  • Pham, V. H., Martinez, M., & Favrel, J. (1998). Assembly sequence generation–Heuristic research. In IFAC Workshop Intelligent Manufacturing System IMS’98, Gramado, Brazil, November 1998, pp. 159–164.

  • Rajan, V. N., Lyons, K. W., & Sreerangam, R. (1997). Assembly representations for capturing mating constraints and component kinematics. In IEEE ISATP 97, 7–9 Aug, pp. 206–211.

  • Rajan V.N. and Nof S.Y. (1996). Minimal precedence constraints for integrated assembly and execution planning. IEEE Transaction on Robotics and Automation, Special Issue on Assembly and Task Planning 12(2): 175–186

    Google Scholar 

  • Rea, H. J., Falconer, R. A., Murray, J. L., & Simmons, J. E. (1998). A structured approach for assembly planning. In International Congress and Exposition–1st Symposium on Assembly Modeling and Assembly Systems, 1998 Anaheim, CA: AMSE.

  • Sawik, T. (1997). Flexible assembly line balancing with alternate assembly plans and duplicate task assignments. In ETFA’97, Emerging Technology on Factory Automation, Los Angeles, September, pp. 171–176.

  • Sedqui, A., Martinez, M., & Favrel, J. (1999). Assembly process–plan dynamic assignment. International Conference on Advanced Computer Systems, ACS’99, Szczecin, Poland, November, pp. 448–455.

  • Shin C.K. and Cho H.S. (1994). On the generation of robotic assembly sequences based on separability and assembly motion stability. Robotica 12: 7–15

    Google Scholar 

  • Stadzisz P.C. and Henrioud J.-M. (1995). Integrated design of product families and assembly systems. IEEE ICRA 2: 1290–1295

    Google Scholar 

  • Sudarsan R., Baysal M.M., Roy U., Foufou S., Bock C., Eswaran S., Lyons K. and Sriram R. (2005). Information models for product representation core and assembly models. International Journal of Product Development 2(3): 207–235

    Google Scholar 

  • Sudarsan R., Han Y.H., Foufou S., Feng S.C., Roy U., Wang F., Sriram R.D. and Lyons K. (2006). A model for capturing product assembly information. Journal of Computing and Information Science in Engineering 6(1): 11–21

    Article  Google Scholar 

  • Sun, R. L., Xiong, Y., Du, R., Ding, H. (2002). FAS scheduling based on operation flexibility. Journal Assembly Automation, MCB UP, 22(3), 277–282. ISSN: 0144–5154.

    Article  Google Scholar 

  • Svensson, C. (2001). A discussion of future challenges to ‘built to order’ SMEs. Mass customization: A threat or a challenge? In paper presented at the 4th SMESME International Conference on Stimulating Manufacturing Excellence in Small and Medium Enterprises, Aalborg, May 14–16.

  • Venugopal, T., Dwivedi, S. N., & Chambers, T. L. (2002). Identifying features of a CAD model from a part feature database. In ASEE Gulf-Southwest Annual Conference, Lafayette, LA, March 20–22.

  • Whitney, D. E. (2004). Mechanical assemblies their design, manufacture, and role in product development. Oxford University Press.

  • Wilson, R. H. (1998). Geometric reasoning about assembly tools. Elsevier Journal of Artificial Intelligence, Artificial, 98 (1), 237–279(43).

    Google Scholar 

  • Wolter J. (1992). A combinatorial analysis of enumerative data structures for assembly planning. Journal of Design and Manufacturing 2(2): 93–104

    Google Scholar 

  • Wortmannm J.C., Muntslag D.R. and Timmermans P.J.M. (1997). Customer-driven manufacturing. Chapman & Hall, London

    Google Scholar 

  • Xu, Y., Mattikalli, R., & Kosla, P. (1991). Generation of partial medial axis for disassembly motion planning. In Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics. ‘Decision Aiding for Complex Systems, Vol. 2, October, 1991, pp. 997–1003.

  • Zauner, J., Haller, M., Brandl, A., & Hartman, W. (2003). Authoring of a mixed reality assembly instructor for hierarchical structures. In IEEE-ACM ISMAR 2003, 7–10 Oct. 2003, pp. 237–246.

  • Zhao, W., & Madhavan, V. (2006). Virtual assembly operations with grasp and verbal interaction. In 2006 ACM International conference on Virtual Reality Continuum and its Applications Hong Kong, New York, NY, USA: China ACM Press. ISBN:1-59593-324-7 pp. 245–254

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, M., Pham, V.H. & Favrel, J. Optimal assembly plan generation: a simplifying approach. J Intell Manuf 20, 15–27 (2009). https://doi.org/10.1007/s10845-008-0100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-008-0100-x

Keywords