Skip to main content
Log in

Real-time fault detection in manufacturing environments using face recognition techniques

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

New image processing techniques as well digital image capture equipment provide an opportunity for fast detection and diagnosis of quality problems in manufacturing environments compared with traditional dimensional measurement techniques. This paper proposes a new use of image processing to detect in real-time quality faults using images traditionally obtained to guide manufacturing processes. The proposed method utilizes face recognition tools to eliminate the need of specific feature detection on determining out-of-specification parts. The focus of the proposed methodology is on computational efficiency to ensure that the algorithm runs in real time in high volume manufacturing environments. The algorithm is trained with previously classified images. New images are then classified into two groups, healthy and unhealthy. This paper proposes a method that combines Discrete Cosine Transform with Fisher’s Linear Discriminant Analysis to detect faults, such as cracks, directly from aluminum stamped parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah, A. S. (2007). Investigation of new techniques of face detection. Unpublished Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg. Retrieved March 16, 2009, from Dissertations and Theses Database.

  • Abdel-Qader I., Abudayyeh O., Kelly M. E. (2003) Analysis of edge-detection techniques for crack identification in bridges. Journal of Computer in Civil Engineering 17(4): 255–263

    Article  Google Scholar 

  • Abdel-Qader I., Pashaie-Rad S., Abudayyeh O., Yehia S. (2006) PCA-based algorithm for unsupervised bridge crack detection. Advances in Engineering Software 37: 771–778

    Article  Google Scholar 

  • Ayenu-Prah, A., & Attoh-Okine, N. (2007). Exploring pavement crack evaluation with bidimensional empirical mode decomposition. In Proceedings of SPIE 6576, 65760Q. doi:10.1117/12.719418.

  • Banks J. (1989) Principles of quality control. Wiley, New York

    Google Scholar 

  • Belhumeur P. N., Hespanha J. P., Kriegman D. J. (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19: 711–720

    Article  Google Scholar 

  • Bursanescu L., Bursanescu M., Hamdi M., Lardigue A., Paiement D. (2001) Three dimensional infrared laser vision system for road surface features analysis. Proceedings of SPIE 4430: 801–808

    Article  Google Scholar 

  • Canny J. (1986) A Computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8: 679–698

    Article  Google Scholar 

  • Chang C. Y., Li C. H., Chang J. W., Jeng M. D. (2009) An unsupervised neural network approach for automatic semiconductor wafer defect inspection. Expert Systems with Applications 36: 950–958

    Article  Google Scholar 

  • Chen L. F., Su C. T., Chen M. H. (2009) A neural-network approach for defect recognition in TFT-LCD photolithography process. IEEE Transactions on Electronic Packaging Manufacturing 32(1): 1–8

    Article  Google Scholar 

  • Chumakov R. (2008) An artificial neural network for fault detection in the assembly of thread-forming screws. Journal of Intelligent Manufacturing 3: 327–333

    Article  Google Scholar 

  • Colmenarez, A. J., & Huang T. S. (1996). Maximum likelihood face detection. In Proceedings of second IEEE conference on automatic face and gesture recognition (pp. 222–224).

  • Demant C., Streicher-Abel B., Waszkewitz P. (1999) Industrial image processing: Visual quality control in manufacturing. Springer, Berlin

    Google Scholar 

  • Er M. J., Chen W. L., Wu S. Q. (2005) High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Transactions on Neural Networks 16: 679–691

    Article  Google Scholar 

  • Fuente, E., Trespademe, F. M., & Gayubo, F. (2003). Detection of small splits in car-body manufacturing. In Proceeding of the IASTED international conference, Rhodes, Greece (pp. 354–359).

  • Garcia, C. (2005). Artificial intelligence applied to automatic supervision, diagnosis, and control in sheet metal stamping processes. Journal of Materials Processing Technology, 164–165, 1351–1357.

  • Gonzalez R. C., Woods R. E., Eddins S. L. (2004) Digital image processing using MATLAB. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Gonzalez R. C., Woods R. E. (2008) Digital image processing. Pearson/Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Graf, H. P., Chen, T., Petajan, E., & Cosatto, E. (1995). Locating faces and facial Parts. In Proceedings of third IEEE international conference on computer vision and pattern recognition (pp. 41–46).

  • Hafez, M., & Abdel Azeem, S. (2002). Using adaptive edge technique for detecting microaneurysms in fluorescein Angiograms of the ocular fundus. In Proceedings of the eleventh Mediterranean electrotechnical conference. MELECON (pp. 479–483).

  • Hjelmås E., Low B. K. (2001) Face detection: A survey. Computer Vision and Image Understanding 83: 236–274

    Article  Google Scholar 

  • Ho S. K., White R. M., Lucas J. (1990) A vision system for automatic crack detection in welds. Measurement Science Technology 1: 287–294

    Article  Google Scholar 

  • Huang, W., & Kovacevic, R. (2009). A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures. Journal of Intelligent Manufacturing. doi:10.1007/s10845-009-0267-9.

  • Joo, S., Moon, W. K., & Kim H. C. (2004). Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network. In Proceedings of the 26th annual international conference of the IEEE EMBS San Francisco, CA, USA (Vol. 1, pp. 1397–1400).

  • Lee, J. H., Lee, J. M., Park, J. N., & Moon, Y. S. (2008). Efficient algorithm for automatic detection of a crack on a concrete bridge. In Proceedings of The 23rd international technical conference on circuits/ systems, computers and communications (pp. 1213–1216).

  • Li, K., Xiang, Y., Yang, X., & Hu, J. (2004). Extracting pathologic patterns from NIR breast images with digital image processing techniques. In G. Z. Yang & T. Jiang (Eds.), Lecture notes in computer science proceedings MIAR 2004, LNCS 3150 (pp. 62–69). Berlin: Springer. http://www.springerlink.com/content/6v3nwu7pqwyvklvj/fulltext.pdf.

  • Li S. Z. (2001) Markov random field modeling in image analysis, Computer science workbench. Springer, Tokyo

    Google Scholar 

  • Liang, T. K., Tanaka, T., Nakamura, H., & Ishizaka, A. (2007). A neural network based computer-aided diagnosis of emphysema using CT lung images. In Proceedings of SICE annual conference, Kagawa University, Japan (pp. 703–709).

  • Liu Z. Q., Austin T., Thomas C. D. L., Clement J. G. (1996) Bone feature analysis using image processing techniques. Computers in Biology and Medicine 26: 65–76

    Article  Google Scholar 

  • Lotlikar R., Kothari R. (2000) Fractional-step dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 22: 623–627

    Article  Google Scholar 

  • Lowry C. A., Woodall W. H., Champ C. W., Rigdon S. E. (1992) A multivariate exponentially weighted moving average chart. Technometrics 34: 46–53

    Article  Google Scholar 

  • Lu J. W., Plataniotis K. N., Venetsanopoulos A. N. (2003) Face recognition using LDA-based algorithms. IEEE Trans. Neural Networks 14(1): 195–200

    Article  Google Scholar 

  • McAndrew A. (2004) Introduction to digital image processing with MATLAB. Thompson Course Technology, Boston, MA

    Google Scholar 

  • Mircic, S., & Jorgovanovic, N. (2006). Application of neural network for automatic classification of Leukocytes. In Proceedings of the 8th seminar on neural network applications in electrical engineering, Belgrade, Serbia (Vol. 1, pp. 141–144).

  • Page E. S. (1954) Continuous inspection scheme. Biometrika 41: 100–115

    Google Scholar 

  • Pan, Z., Rust, A. G., & Bolouri H. (2000). Image redundancy reduction for neural network classification using discrete cosine transforms. In Proceedings of the international joint conference on neural networks, Como, Italy (Vol. 3, pp. 149–154).

  • Reynolds M. R. Jr (1996) Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. Journal of Quality Technology 28(2): 199–212

    Google Scholar 

  • Rowley H. A., Baluja S., Kanade T. (1998) Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20: 23–38

    Article  Google Scholar 

  • Rowley, H. A., Baluja, S., & Kanade T. (1998). Rotation Invariant neural network-based face detection. In Proceedings IEEE conference computer vision and pattern recognition (pp. 38–44).

  • Selek M., Sahin O. S., Kahramanli S. (2009) Using artificial neural networks for real-time observation of the endurance state of a steel specimen under loading. Expert Systems with Applications 36: 7400–7408

    Article  Google Scholar 

  • Shima Y., Kashioka S., Yasue T. (1989) Consideration on automatic defect detection algorithm for stamped patterns in electronic parts. Systems and Computers in Japan 8(1): 48–58

    Article  Google Scholar 

  • Sirohey, S. A. (1993). Human face segmentation and identification. Unpublished Master’s thesis, University of Maryland. Retrieved March 16, 2009, from http://www.lib.umd.edu/drum/bitstream/1903/400/2/CS-TR-3176.pdf.

  • Sirovich L., Kirby M. (1987) Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 4: 519–524

    Article  Google Scholar 

  • Turk M., Pentland A. (1991) Eigenfaces for recognition. Journal of Cognitive Neuroscience 3: 71–86

    Article  Google Scholar 

  • Viennet V., Soulie F. F. (1998) Connectionist methods for human face processing, in face recognition: From theory to application. Springer, Berlin/New York

    Google Scholar 

  • Woodall W. H. (2000) Controversies and contradictions in statistical process control. Journal of Quality Technology 32(4): 341–350

    Google Scholar 

  • Yang M. H., Kriegman D. J., Ahuja N. (2002) Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24: 34–58

    Article  Google Scholar 

  • Zhao, Q., & Camelio, J. (2008). Quality monitoring and fault detection on stamped parts using DCA and LDA image recognition techniques. In Proceedings of the international conference on manufacturing science and engineering, MSEC, Illinois, USA.

  • Zhao, W., Chellappa, R., & Phillips, P. J. (1999). Subspace linear discriminant analysis for face recognition. Center for Automation Research, University of Maryland, Technical Report CAR-TR-914.

  • Zhao W., Chellappa R., Phillips P. J., Rosenfeld A. (2003) Face recognition: A literature survey. ACM Computing Surveys (CSUR) 35: 399–458

    Article  Google Scholar 

  • Zobel, M., Gebhard, A., Paulus, D., Denzler, J., & Niemann, A. (2000). Robust facial feature localization by coupled features. In Proceedings fourth IEEE international conference on automatic face and gesture recognition.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Camelio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megahed, F.M., Camelio, J.A. Real-time fault detection in manufacturing environments using face recognition techniques. J Intell Manuf 23, 393–408 (2012). https://doi.org/10.1007/s10845-010-0378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0378-3

Keywords

Navigation