Skip to main content
Log in

Heterarchical production control in manufacturing systems using the potential fields concept

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This article deals with the potential field concept and its application to dynamic task allocation and dynamic routing controls of flexible manufacturing systems (FMS). This potential field approach requires increasing the interaction capabilities of the different entities, not only resources but also products themselves. In this approach, products request services from resources, sensing the fields emitted by resources and selecting the field that best satisfies the service request. Many already published approaches that are capable of modelling systems based on the interactions between the entities in manufacturing systems are presented. Then, the potential field concept and its application to FMS control are explained in detail. Next, a potential field model and its application are proposed in the real-time heterarchical control of dynamic resource allocation and dynamic product routing. Using a NetLogo simulation, the potential field model supports hard assumptions, such as dynamic transportation times, limited storage capacities and breakdown events. To validate this model, an ongoing real implementation is presented with the AIP-PRIMECA FMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aissani N., Beldjilali B., Trentesaux D. (2009) Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach. Engineering Applications of Artificial Intelligence 22(7): 1089–1103

    Article  Google Scholar 

  • Arkin, R., Bekey, C., & George, A. (1997). Robot Colonies, ISBN: 978-0-7923-9904-9, 160 p., Hardcover.

  • Babiceanu R., Chen F. (2006) Development and applications of holonic manufacturing systems: A survey. Journal of Intelligent Manufacturing 17: 111–131

    Article  Google Scholar 

  • Bahroun, Z., et al. (2008). Modélisation multi-agents pour la simulation de politiques de d’approvisionnement au sein de chaines logistiques, 7e International Conference of MOdelisation and SIMulation - MOSIM’08—From 31 March to 2 April—Paris- France.

  • Baker A. D. (1998) A survey of factory control algorithms that can be implemented in a multi-agent heterarchy: Dispatching, scheduling, and pull. Journal of Manufacturing Systems 17(4): 297–320

    Article  Google Scholar 

  • Barraquand, J., & Latombe J. (1989). Robot motion planning: A distibuted representation approach. Research Report, STAN-CS-89-1257, Department of Computer Science, Stanford University.

  • Berger, T., Sallez, Y., & Trentesaux, D. (2009). Open control of FMS and its application to potential field, CIRP09, 42nd Conference on Manufacturing Systems, Wed. 3 - Fri. 5, June, Grenoble, France.

  • Bousbia, S., & Trentesaux, D. (2002). Self-organization in distributed manufacturing control: state-of-the-art and future trends. IEEE International conference on Systems, Man & Cybernetics, (Hammamet, Tunisa) paper #WA1L1.

  • Breton, L., Maza, S., & Catstagna, P. (2004). Simulation Multi_agent de systèmes d’AGVs : Comparaison avec une approche prédictive. 5° Francophone Conference in MOdelisation and SIMulation, MOSIM’04—From 1 to 3 September - Nantes (France).

  • Brückner, S. (2000). Return from the Ant synthetic ecosystems for manufacturing control, Thesis Humboldt-University of Berlin, June.

  • Clarinet System. (2009). Network connectivity for mobile devices, http://www.clarinetsys.com.

  • Dorigo M., Stützle T. (2006) Ant colony optimization. The MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Ferber, J. (1995). Les systèmes multi- agents—vers une intelligence collective, InterEditions, Paris (ISBN 2- 7296- 0572- X).

  • Hadeli T., Valckenaers P., Kollingbaum M., Van Brussel H. (2004) Multi-agent coordination and control using stigmergy. Computers in Industry 53: 75–96

    Article  Google Scholar 

  • Hu H., Li Z. (2009) Local and global deadlock prevention policies for resource allocation systems using partially generated reachability graphs. Computers & Industrial Engineering 57: 1168–1181

    Article  Google Scholar 

  • Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In IEEE international conference on robotics and automation (pp. 500–505).

  • Koestler A. (1967) The Ghost in the Machine. Hutchinson, Stroundsburg, PA

    Google Scholar 

  • Leitaõ P. (2009) Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence 22: 979–991

    Article  Google Scholar 

  • Maione G., Naso D. (2003) A soft computing approach for task contracting in multi-agent manufacturing control. Computers in Industry 52: 199–219

    Article  Google Scholar 

  • Mamei M., Menezes R., Tolksdorf R., Zambonelli F. (2006) Case studies for self-organization in computer science. Journal of Systems Architecture 52: 443–460

    Article  Google Scholar 

  • Mařík V., Lazansky J. (2007) Industrial applications of agent technologies. Control Engineering Practice 15: 1364–1380

    Article  Google Scholar 

  • McLurkin, J. (2004). Stupid robot tricks: A behavior-based distributed algorithm library for programming swarms of robots. Master of science in electrical engineering and computer science at the Massachusetts Institute of Technology.

  • Montech Technology. (2008). Conveyor systems, http://www.montech.com.

  • Moujahed, S. (2007). Approche multi-agents auto-organisée pour la résolution des contraintes spatiales dans les problèmes de positionnement mono et multi-niveaux. Thesis in Franche-Comté University and Belfort-Montbéliard Technology University.

  • Okino, N. (1993). Bionic manufacturing system in flexible manufacturing system: Past—present—future. In J. Peklenik (ed) (pp. 73–95) CIRP, Paris.

  • Ounnar, F., Pujo, P., Mekaouche, L., & Giambiasi, N. (2007). Integration of a flat holonic form in an HLA environment. Journal of Intelligent Manufacturing. doi:10.1007/s10845-008-0106-4.

  • Parunak, H. V. D., Brueckner, S., & Sauter, J. (2001). ERIM’s approach to fine-grained agents. In Proceedings of the NASA/JPL workshop on radical agent concepts (WRAC’2001), Greenbelt, MD, Sept. 19–21.

  • Peeters, P., Van Brussel, H., Valckenaers, P., Wyns, J., Bongaerts, L., Heikkilä, T., & Kollingbaum, M. (1999). Pheromone based emergent shop floor control system for flexible flow shops. In Proceedings of international workshop IWES’99, Kobe, Japan, Dec. 6–7.

  • Reynolds C. (1987) Flocks, herds, and schools: A distributed behavioural model. Computer Graphics 21(4): 25–34

    Article  Google Scholar 

  • Sallez Y., Berger T., Trentesaux D. (2009a) A stigmergic approach for dynamic routing of active products in FMS. Computer in Industry 60(3): 204–216

    Article  Google Scholar 

  • Sallez, Y., Berger, T., & Trentesaux, D. (2009b). Open-control: a new paradigm for integrated product-driven manufacturing control. In Proceedings of 13th IFAC symposium on information control problems in manufacturing (INCOM ‘09), Russia, June 3–5.

  • Shen W., Wang L., Hao Q. (2006) Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey. IEEE Transactions on Systems, Man, and Cybernetics—Part c: Applications and Reviews 36(4): 563–577

    Article  Google Scholar 

  • Smith R. G. (1980) The contract net protocol: High level communication and control in a distributed problem solver. IEEE Transactions on Computer C 29(12): 1104–1113

    Article  Google Scholar 

  • Sousa P., Ramos C. (1998) A dynamic scheduling holon for manufacturing orders. Journal of Intelligent Manufacturing 9: 107–112

    Article  Google Scholar 

  • Theraulaz G., Bonabeau E. (1999) A brief history of stigmergy. Journal of Artificial Life 5(2): 97–116

    Article  Google Scholar 

  • Trentesaux D., Pesin P., Tahon C. (2000) Distributed artificial intelligence for FMS scheduling, control and design support. Journal of Intelligent Manufacturing 11: 573–589

    Article  Google Scholar 

  • Trentesaux D. (2007) Les systèmes de pilotage hétérarchiques: innovations réelles ou modèles stériles ?. European Journal of Automated system 41(9–10): 1165–1202

    Article  Google Scholar 

  • Trentesaux D. (2009) Distributed control of production systems. Engineering Applications of Artificial Intelligence 22(7): 971–978

    Article  Google Scholar 

  • Ueda K. (2001) Synthesis and emergence—research overview. Artificial Intelligence in Engineering 15: 321–327

    Article  Google Scholar 

  • Ueda K., Hatono I., Fujii N., Vaario J. (2001) Line-Less production system using self-organization: A case study for BMS. Annuals of CIRP 50/1: 319–322

    Article  Google Scholar 

  • Vaario J., Ueda K. (1998) An emergent modelling method for dynamic scheduling. Journal of Intelligent Manufacturing 9(2): 129–140

    Article  Google Scholar 

  • Van Brussel H., Wyns J., Valckenaers P., Bongaerts L., Peeters L. (1998) Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37(3): 255–274

    Article  Google Scholar 

  • Wago system. (2009), Innovative Connections, http://www.wago.com.

  • Weyns D., Bouck N., Holvoet T. (2008) A field-based versus a protocol-based approach for adaptive task assignment. Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  • Wilensky, U. (1999). http://ccl.northwestern.edu/netlogo/. Center for connected learning and computer-based modeling, orthwestern University. Evanston, IL.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zbib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbib, N., Pach, C., Sallez, Y. et al. Heterarchical production control in manufacturing systems using the potential fields concept. J Intell Manuf 23, 1649–1670 (2012). https://doi.org/10.1007/s10845-010-0467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0467-3

Keywords

Navigation