Skip to main content
Log in

A study on automatic on-machine inspection system for 3D modeling and measurement of cutting tools

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

A 3D model of the maximum rotating envelope of a milling cutter with tool holder is required for Computer Aided Manufacturing (CAM) process design and machining simulation. The user may define the 3D model of the whole tool assembly in the tool library of CAM software. However, it is not convenient and reliable. Considering these problems, a new method based on single view 3D reconstruction algorithm has been proposed in previous research work, which is able to quickly reconstruct the 3D model of a cutter with tool holder while they are installed onto the spindle. As the extension of this work, this paper focuses on the recent progresses in order to improve the automation, accuracy, efficiency and reliability of tool modeling system. First, an improved flexible on-machine camera calibration procedure is proposed. The accurate motion of machine tool axis is used to calibrate the camera on machine tool instead of a physical calibration board. The whole procedure of calibration can be conducted automatically by running NC code. Therefore, the automation of vision system can be guaranteed. Second, the contour extraction module is improved by using a method of silhouette image composition. This method is applied to solve the problem of translucent and fuzzy cutter profile induced by motion blur. Third, the new algorithm for contour partitioning and classification are proposed, which is more reliable and robust. The reliability and accuracy of the vision system can be guaranteed. Finally, the vision system with an 8 mm lens and 1 mm extensions has been tested on different type of machine tool with smaller cutters. The average measurement accuracy is about 35 microns verified by comparison with a commercial tool setting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouguet, J.-Y. (2010). Camera calibration toolbox for matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#links.

  • Bradski G., Kaehler A. (2008) Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media Inc., Cambridge, MA

    Google Scholar 

  • Colombo, C., Comanducci, D., Bimbo, A. D., & Pernici, F. (2004). Accurate automatic localization of surfaces of revolution for self-calibration and metric reconstruction. Paper presented at the Proceedings of the 2004 conference on computer vision and pattern recognition workshop (CVPRW’04) (pp. 55–60).

  • Faugeras O. (1997) Three-dimensional computer vision: A geometric viewpoint. MIT Press, Cambridge, MA

    Google Scholar 

  • Hartley R., Zisserman A. (2003) Multiple view geometry in computer vision (2nd ed.). Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Klette R. (2004) Digital geometry: Geometric methods for digital picture analysis (The Morgan Kaufmann series in computer graphics and geometric modeling). Elsevier, Amsterdam

    Google Scholar 

  • Salvi J., Armangué X., Batlle J. (2002) A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition 35(7): 1617–1635

    Article  Google Scholar 

  • Tian X., Zhang X., Yamazaki K., Hansel A. (2010) A study on three-dimensional vision system for machining setup verification. Robotics and Computer-Integrated Manufacturing 26: 46–55

    Article  Google Scholar 

  • Zhang Z. (2000) A flexible new technique for camera calibration. Ieee Transactions on Pattern Analysis and Machine Intelligence 22(11): 1330–1334

    Article  Google Scholar 

  • Zhang X., Tsang W. M., Mori M., Yamazaki K. (2010) Automatic 3D model reconstruction of cutting tools from a single camera. Computers in Industry 61(7): 711–726

    Article  Google Scholar 

  • Zhang, X., Tsang, W., Tian, X., Yamazaki, K., & Mori, M. (2008). Automatic segmentation of the apparent contour for 3D modeling of cutting tools from single view. In G. B. Bebis, et al. (Eds.), Las Vegas, NV, United states (PART 2 ed., Vol. 5359 LNCS, pp. 772–781), Lecture Notes in Computer Science. Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Tsang, WM., Yamazaki, K. et al. A study on automatic on-machine inspection system for 3D modeling and measurement of cutting tools. J Intell Manuf 24, 71–86 (2013). https://doi.org/10.1007/s10845-011-0540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-011-0540-6

Keywords

Navigation